Bài 2. Phương trình đường thẳng trong không gian - Toán 12 Chân trời sáng tạo

Bình chọn:
4.9 trên 7 phiếu
Lý thuyết Phương trình đường thẳng trong không gian

1. Phương trình đường thẳng trong không gian Vecto chỉ phương của đường thẳng

Xem chi tiết

Câu hỏi mục 1 trang 44, 45, 46, 47

Trong không gian \(Oxyz\), cho điểm \({M_0}\) cố định và vectơ \(\vec a\) khác \(\vec 0\). Có bao nhiêu đường thẳng \(d\) đi qua \({M_0}\) và song song hoặc trùng với giá của \(\vec a\)?

Xem lời giải

Câu hỏi mục 2 trang 48, 49, 50, 51, 52, 53

Cho ba đường thẳng \(d:\left\{ \begin{array}{l}x = 4 + t\\y = 1 + 2t\\z = 1 + 3t\end{array} \right.\), \(d':\left\{ \begin{array}{l}x = 2t'\\y = 7 + 4t'\\z = 2 + 6t'\end{array} \right.\); \(d'':\left\{ \begin{array}{l}x = 5 + 2t''\\y = 3 + 4t''\\z = 4 + 6t''\end{array} \right.\). a) Nêu nhận xét về ba vectơ chỉ phương của \(d\), \(d'\) và \(d''\). b) Xét điểm \(M\left( {4;1;1} \right)\) nằm trên \(d\). Điểm \(M\) có nằm trên \(d'\) hoặc \(d''\) không? c) Từ các kết quả trên, ta có thể kết luậ

Xem lời giải

Câu hỏi mục 3 trang 53, 54, 55, 65, 57, 58, 59

Cho hai đường thẳng \(d\) và \(d'\) có vectơ chỉ phương lần lượt là \(\vec a = \left( {2;1;3} \right)\) và \(\vec a' = \left( {3;2; - 8} \right)\).

Xem lời giải

Bài 1 trang 59

Viết phương trình tham số của đường thẳng \(a\) trong mỗi trường hợp sau: a) Đường thẳng \(a\) đi qua điểm \(M\left( {0; - 2; - 3} \right)\) và có vectơ chỉ phương \(\vec a = \left( {1; - 5;0} \right)\) b) Đường thẳng \(a\) đi qua hai điểm \(A\left( {0;0;2} \right)\) và \(B\left( {3; - 2;5} \right)\).

Xem lời giải

Bài 2 trang 59

Viết phương trình chính tắc của đường thẳng \(b\) trong mỗi trường hợp sau: a) Đường thẳng \(b\) đi qua điểm \(M\left( {1; - 2; - 3} \right)\) và có vectơ chỉ phương \(\vec a = \left( {5; - 3;2} \right)\). b) Đường thẳng \(b\) đi qua hai điểm \(A\left( {4;7;1} \right)\) và \(B\left( {6;1;5} \right)\).

Xem lời giải

Bài 3 trang 59

Cho đường thẳng \(d\) có phương trình chính tắc \(\frac{{x - 3}}{1} = \frac{{y + 3}}{3} = \frac{{z - 2}}{7}\). a) Tìm một vectơ chỉ phương của \(d\) và một điểm trên \(d\). b) Viết phương trình tham số của \(d\).

Xem chi tiết

Bài 4 trang 59

Trong trò chơi mô phỏng bắn súng 3D trong không gian (Oxyz), một xạ thủ đang ngắm với toạ độ khe ngắm và đầu ruồi lần lượt là (Mleft( {3;3;1,5} right)), (Nleft( {3;4;1,5} right)). Viết phương trình tham số của đường ngắm bắn của xạ thủ (xem như đường thẳng (MN)).

Xem lời giải

Bài 5 trang 60

Xét vị trí tương đối giữa các cặp đường thẳng sau: a) \(d:\left\{ \begin{array}{l}x = 1 + t\\y = - 1 + 2t\\z = - 2 + t\end{array} \right.\) và \(d':\left\{ \begin{array}{l}x = 2 + 2t'\\y = 3 + 4t'\\z = 2t'\end{array} \right.\) b) \(d:\frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{{z - 3}}{2}\) và \(d':\frac{{x - 2}}{1} = \frac{{y - 1}}{5} = \frac{{z - 1}}{1}\).

Xem lời giải

Bài 6 trang 60

Viết phương trình tham số của đường thẳng \(d\) đi qua điểm \(A\left( {1;0;1} \right)\) và song song với đường thẳng \(d':\frac{{x + 1}}{3} = \frac{{y - 1}}{2} = \frac{{z - 1}}{4}\).

Xem lời giải

Bài 7 trang 60

Trên phần mềm mô phỏng 3D một máy khoan trong không gian \(Oxyz\), cho biết phương trình trục \(a\) của mũi khoan và một đường rãnh \(b\) trên vật cần khoan (hình dưới đây) lần lượt là \(a:\left\{ \begin{array}{l}x = 1\\y = 2\\z = 3t\end{array} \right.\) và \(b:\left\{ \begin{array}{l}x = 1 + 4t'\\y = 2 + 2t'\\z = 6\end{array} \right.\). a) Chứng minh \(a\), \(b\) vuông góc và cắt nhau. b) Tìm toạ độ giao điểm của \(a\) và \(b\).

Xem lời giải

Bài 8 trang 60

Tính góc giữa hai đường thẳng \(d:\frac{{x - 3}}{2} = \frac{{y + 5}}{4} = \frac{{z - 7}}{2}\) và \(d':\frac{{x - 1}}{3} = \frac{{y + 7}}{3} = \frac{{z - 12}}{6}\).

Xem lời giải

Bài 9 trang 60

Tính góc giữa đường thẳng \(d:\frac{{x + 2}}{2} = \frac{{y + 2}}{2} = \frac{{z - 1}}{1}\) và mặt phẳng \(\left( P \right):3y - 3z + 1 = 0\).

Xem lời giải

Bài 10 trang 60

Tính góc giữa hai mặt phẳng \(\left( P \right):4y + 4z + 1 = 0\) và \(\left( {P'} \right):7x + 7z + 2 = 0\).

Xem lời giải

Bài 11 trang 60

Trên một cánh đồng điện mặt trời, người ta đã thiết lập sẵn một hệ toạ độ \(Oxyz\). Hai tấm pin năng lượng lần lượt nằm trong hai mặt phẳng \(\left( P \right):2x + 2z + 1 = 0\) và \(\left( {P'} \right):x + z + 7 = 0\). a) Tính góc giữa \(\left( P \right)\) và \(\left( {P'} \right)\). b) Tính góc hợp bởi \(\left( P \right)\) và \(\left( {P'} \right)\) với mặt đất \(\left( Q \right)\) có phương trình \(z = 0\).

Xem lời giải

Bài 12 trang 60

Trong không gian \(Oxyz\), cho hình lăng trụ đứng \(OBC.O'B'C'\) có đáy là tam giác \(OBC\) vuông tại \(O\). Cho biết \(B\left( {3;0;0} \right)\), \(C\left( {0;1;0} \right)\), \(O'\left( {0;0;2} \right)\). Tính góc giữa: a) hai đường thẳng \(BO'\) và \(B'C\). b) hai mặt phẳng \(\left( {O'BC} \right)\) và \(\left( {OBC} \right)\). c) đường thẳng \(B'C\) và mặt phẳng \(\left( {O'BC} \right)\).

Xem lời giải