Giải bài tập 11 trang 60 SGK Toán 12 tập 2 - Chân trời sáng tạo>
Trên một cánh đồng điện mặt trời, người ta đã thiết lập sẵn một hệ toạ độ \(Oxyz\). Hai tấm pin năng lượng lần lượt nằm trong hai mặt phẳng \(\left( P \right):2x + 2z + 1 = 0\) và \(\left( {P'} \right):x + z + 7 = 0\). a) Tính góc giữa \(\left( P \right)\) và \(\left( {P'} \right)\). b) Tính góc hợp bởi \(\left( P \right)\) và \(\left( {P'} \right)\) với mặt đất \(\left( Q \right)\) có phương trình \(z = 0\).
Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Trên một cánh đồng điện mặt trời, người ta đã thiết lập sẵn một hệ toạ độ \(Oxyz\). Hai tấm pin năng lượng lần lượt nằm trong hai mặt phẳng \(\left( P \right):2x + 2z + 1 = 0\) và \(\left( {P'} \right):x + z + 7 = 0\).
a) Tính góc giữa \(\left( P \right)\) và \(\left( {P'} \right)\).
b) Tính góc hợp bởi \(\left( P \right)\) và \(\left( {P'} \right)\) với mặt đất \(\left( Q \right)\) có phương trình \(z = 0\).
Phương pháp giải - Xem chi tiết
a) Chỉ ra các vectơ pháp tuyến \(\vec n\) và \(\vec n'\) lần lượt của \(\left( P \right)\) và \(\left( {P'} \right)\), sau đó sử dụng công thức \(\cos \left( {\left( P \right),\left( {P'} \right)} \right) = \left| {\cos \left( {\vec n,\vec n'} \right)} \right|\).
b) Làm tương tự câu a.
Lời giải chi tiết
a) Một vectơ pháp tuyến của \(\left( P \right)\) là \(\vec n = \left( {2;0;2} \right)\).
Một vectơ pháp tuyến của \(\left( {P'} \right)\) là \(\vec n' = \left( {1;0;1} \right)\).
Ta có \(\cos \left( {\left( P \right),\left( {P'} \right)} \right) = \left| {\cos \left( {\vec n,\vec n'} \right)} \right| = \frac{{\left| {2.1 + 0.0 + 2.1} \right|}}{{\sqrt {{2^2} + {0^2} + {2^2}} .\sqrt {{1^2} + {0^2} + {1^2}} }} = 1.\)
Suy ra \(\left( {\left( P \right),\left( {P'} \right)} \right) = {0^o}\).
Cách khác: Do \(\frac{2}{1} = \frac{2}{1}\) nên \(\vec n\) và \(\vec n'\) là hai vectơ cùng phương. Suy ra \(\left( P \right)\parallel \left( {P'} \right)\). Từ đó \(\left( {\left( P \right),\left( {P'} \right)} \right) = {0^o}\).
b) Một vectơ pháp tuyến của mặt đất \(\left( Q \right)\) là \(\vec m = \left( {0;0;1} \right)\).
Ta có \(\cos \left( {\left( P \right),\left( Q \right)} \right) = \left| {\cos \left( {\vec n,\vec m} \right)} \right| = \frac{{\left| {2.0 + 0.0 + 2.1} \right|}}{{\sqrt {{2^2} + {0^2} + {2^2}} .\sqrt {{0^2} + {0^2} + {1^2}} }} = \frac{{\sqrt 2 }}{2}.\)
Suy ra \(\left( {\left( P \right),\left( Q \right)} \right) = {45^o}\). Chứng minh tương tự, ta có \(\left( {\left( {P'} \right),\left( Q \right)} \right) = {45^o}.\)
- Giải bài tập 12 trang 60 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải bài tập 10 trang 60 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải bài tập 9 trang 60 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải bài tập 8 trang 60 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải bài tập 7 trang 60 SGK Toán 12 tập 2 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Chân trời sáng tạo
- Lý thuyết Xác suất có điều kiện Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình đường thẳng trong không gian Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Chân trời sáng tạo
- Lý thuyết Xác suất có điều kiện Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình đường thẳng trong không gian Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo