Giải mục 3 trang 25, 26 SGK Toán 11 tập 1 - Kết nối tri thức


Cho hàm số (y = sin x). a) Xét tính chẵn, lẻ của hàm số

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

HĐ4

Trả lời câu hỏi Hoạt động 4 trang 25 SGK Toán 11 Kết nối tri thức

Cho hàm số \(y = \sin x\).

a) Xét tính chẵn, lẻ của hàm số.

b) Hoàn thành bảng giá trị sau của hàm số \(y = \sin x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) bằng cách tính giá trị của \(\sin x\) với những x không âm, sau đó sử dụng kết quả câu a để suy ra giá trị tương ứng của \(\sin x\) với những x âm.

            \(x\)

            \( - \pi \)

            \( - \frac{{3\pi }}{4}\)

            \( - \frac{\pi }{2}\)

            \( - \frac{\pi }{4}\)

0

            \(\frac{\pi }{4}\)

            \(\frac{\pi }{2}\)

            \(\frac{{3\pi }}{4}\)

            \(\pi \)

\(\sin x\)

?

?

?

?

?

?

?

?

?

Bằng cách lấy nhiều điểm \(M\left( {x;\sin x} \right)\) với \(x \in \left[ { - \pi ;\pi } \right]\) và nối lại ta được đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\).

c) Bằng cách làm tương tự câu b cho các đoạn khác có độ dài bằng chu kỳ \(T = 2\pi \), ta được đồ thị của hàm số \(y = \sin x\) như hình dưới đây.

 

Từ đồ thị ở Hình 1.14, hãy cho biết tập giá trị, các khoảng đồng biến, các khoảng nghịch biến của hàm số \(y = \sin x\).

Phương pháp giải:

Sử dụng định nghĩa hàm số chẵn lẻ.

Dựa vào đồ thị để xác định tập giá trị, các khoảng đồng biến, nghịch biến của hàm số.

Lời giải chi tiết:

a) Tập xác định của hàm số là \(D = \mathbb{R}\).

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D.

Ta có: \(f\left( { - x} \right) = \sin \left( { - x} \right) =  - \sin x =  - f\left( x \right),\;\forall x \in D\).

Vậy \(y = \sin x\) là hàm số lẻ.

b)

     \(x\)

            \( - \pi \)

            \( - \frac{{3\pi }}{4}\)

    \( - \frac{\pi }{2}\)

            \( - \frac{\pi }{4}\)

0

            \(\frac{\pi }{4}\)

            \(\frac{\pi }{2}\)

            \(\frac{{3\pi }}{4}\)

            \(\pi \)

            \(\sin x\)

            \(0\)

    \( - \frac{{\sqrt 2 }}{2}\)

            \( - 1\)

    \( - \frac{{\sqrt 2 }}{2}\)

0

\(\frac{{\sqrt 2 }}{2}\)

1

\(\frac{{\sqrt 2 }}{2}\)

0

c) Từ đồ thị trên, ta thấy hàm số \(y = \sin x\) có tập xác định là \(\mathbb{R}\), tập giá trị là [-1;1] và đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi } \right)\) và nghịch biến trên mỗi khoảng \(\left( {\frac{\pi }{2} + k2\pi ;\frac{{3\pi }}{2} + k2\pi } \right),\;k \in \mathbb{Z}.\)

LT4

Trả lời câu hỏi Luyện tập 4 trang 26 SGK Toán 11 Kết nối tri thức

Tìm tập giá trị của hàm số \(y = 2\sin x\).

Phương pháp giải:

Tập giá trị của hàm số là tập min – max của hàm số trên tập xác định.

Lời giải chi tiết:

Tập xác định của hàm số là \(D = \mathbb{R}\).

Vì \( - 1 \le \sin x \le 1\) \( \Rightarrow \) Tập giá trị của hàm số \(y = 2\sin x\) là \(T = \left[ { - 2;2} \right]\).

VD1

Trả lời câu hỏi Vận dụng 1 trang 26 SGK Toán 11 Kết nối tri thức

Xét tình huống mở đầu.

Giả sử vận tốc \(v\) (tính bằng lit/giây) của luồng khí trong một chu kì hô hấp (tức là thời gian từ lúc bắt đầu của một nhịp thở đến khi bắt đầu của nhịp thở tiếp theo) của một người nào đó ở trạng thái nghỉ ngơi được cho bởi công thức

\( v = 0,85 \sin \frac{\pi t}{3} \)

trong đó (t) là thời gian (tính bằng giây). Hãy tìm thời gian của một chu kì hô hấp đầy đủ và số chu kì hô hấp trong một phút của người đó.

a) Giải bài toán ở tình huống mở đầu.

b) Biết rằng quá trình hít vào xảy ra khi v > 0 và quá trình thở ra khi v < 0. Trong khoảng thời gian từ 0 đến 5 giây, khoảng thời điểm nào thì người đó hít vào? Người đó thở ra?

Phương pháp giải:

Áp dụng công thức tính chu kì.

Lời giải chi tiết:

a) Chu kì hô hấp: \(T = \frac{{2\pi }}{\omega } = \frac{{2\pi }}{{\frac{\pi }{3}}} = 6\left( s \right)\).

Số chu kì hô hấp trong 1 phút là \(\frac{60}{6}=10\) (chu kì).

b) Ta có: \(v=0,85\sin \frac{\pi t}{3}\).

+) v > 0 khi \(0,85\sin \frac{\pi t}{3}>0\Leftrightarrow \sin \frac{\pi t}{3}>0\).

Mà \(– 1 ≤\frac{\pi t}{3} ≤ 1\) với mọi \(x \in \mathbb{R}\). Do đó, \(0<\sin \frac{\pi t}{3}\le 1\).

+) v < 0 khi \(0,85\sin \frac{\pi t}{3}<0\Leftrightarrow \sin \frac{\pi t}{3}<0\).

Mà \(– 1 ≤ \frac{\pi t}{3}≤ 1\) với mọi \(x \in \mathbb{R}\). Do đó, \(−1 ≤ \sin\frac{\pi t}{3} < 0\).

+) Với \(t \in (0;3)\) ta có \(0 < \sin\frac{\pi t}{3} ≤ 1\).

+) Với \(t \in (3;5]\) ta có \(−1 ≤  \sin\frac{\pi t}{3} < 0\).

Vậy trong khoảng thời gian từ 0 đến 5 giây, khoảng thời điểm sau 0 giây đến trước 3 giây thì người đó hít vào và khoảng thời điểm sau 3 giây đến 5 giây thì người đó thở ra.


Bình chọn:
4 trên 4 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí