Giải bài tập 8 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo


Giá trị của (intlimits_0^2 {left| {{x^2} - x} right|dx} ) bằng: A. (frac{2}{3}) B. (1) C. (frac{1}{3}) D. (2)

Đề bài

Giá trị của \(\int\limits_0^2 {\left| {{x^2} - x} \right|dx} \) bằng:

A. \(\frac{2}{3}\)

B. \(1\)

C. \(\frac{1}{3}\)

D. \(2\)

Phương pháp giải - Xem chi tiết

Sử dụng các tính chất của tích phân để phá dấu giá trị tuyệt đối và tính giá trị của tích phân trên.

Lời giải chi tiết

Ta có \({x^2} - x = 0 \Leftrightarrow x = 0\) hoặc \(x = 1\).

Như vậy,

\(\int\limits_0^2 {\left| {{x^2} - x} \right|dx}  = \int\limits_0^1 {\left| {{x^2} - x} \right|dx}  + \int\limits_1^2 {\left| {{x^2} - x} \right|dx}  = \left| {\int\limits_0^1 {\left( {{x^2} - x} \right)dx} } \right| + \left| {\int\limits_1^2 {\left( {{x^2} - x} \right)dx} } \right|\)

\( = \left| {\left. {\left( {\frac{{{x^3}}}{3} - \frac{{{x^2}}}{2}} \right)} \right|_0^1} \right| + \left| {\left. {\left( {\frac{{{x^3}}}{3} - \frac{{{x^2}}}{2}} \right)} \right|_1^2} \right| = \left| {\frac{{ - 1}}{6} - 0} \right| + \left| {\frac{2}{3} - \left( { - \frac{1}{6}} \right)} \right| = 1\)

Vậy đáp án đúng là B.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí