Giải bài tập 3 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo>
Khẳng định nào sau đây đúng? A. (int {left( {cos x - 2sin x} right)dx} = sin x + 2cos x + C) B. [int {left( {cos x - 2sin x} right)dx} = - sin x + 2cos x + C] C. (int {left( {cos x - 2sin x} right)dx} = sin x - 2cos x + C) D. (int {left( {cos x - 2sin x} right)dx} = - sin x - 2cos x + C)
Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa
Đề bài
Khẳng định nào sau đây đúng?
A. \(\int {\left( {\cos x - 2\sin x} \right)dx} = \sin x + 2\cos x + C\)
B. \(\int {\left( {\cos x - 2\sin x} \right)dx} = - \sin x + 2\cos x + C\)
C. \(\int {\left( {\cos x - 2\sin x} \right)dx} = \sin x - 2\cos x + C\)
D. \(\int {\left( {\cos x - 2\sin x} \right)dx} = - \sin x - 2\cos x + C\)
Phương pháp giải - Xem chi tiết
Tính \(\int {\left( {\cos x - 2\sin x} \right)dx} \) dựa vào các công thức tính nguyên hàm đã học.
Lời giải chi tiết
Ta có
\(\int {\left( {\cos x - 2\sin x} \right)dx} = \int {\cos xdx} - 2\int {\sin xdx} = \sin x - 2\left( { - \cos x} \right) + C = \sin x + 2\cos x + C\)
Vậy đáp án đúng là A.
- Giải bài tập 4 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải bài tập 5 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải bài tập 6 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải bài tập 7 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải bài tập 8 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Chân trời sáng tạo
- Lý thuyết Xác suất có điều kiện Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình đường thẳng trong không gian Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Chân trời sáng tạo
- Lý thuyết Xác suất có điều kiện Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình đường thẳng trong không gian Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo