Giải bài tập 4 trang 89 SGK Toán 9 tập 1 - Chân trời sáng tạo>
Cho tam giác ABC có đương tròn (O) nằm trong và tiếp xúc với ba cạnh của tam giác. Biết AM = 6 cm; BP = 3 cm; CE = 8 cm (Hình 17). Tính chu vi tam giác ABC.
Đề bài
Cho tam giác ABC có đương tròn (O) nằm trong và tiếp xúc với ba cạnh của tam giác. Biết AM = 6 cm; BP = 3 cm; CE = 8 cm (Hình 17). Tính chu vi tam giác ABC.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
- Dựa vào tính chất hai tiếp tuyến cắt nhau để chứng minh BM = BP, AM = AE, CE = CP.
- Tính chu vi tam giác bằng AB + AC + BC.
Lời giải chi tiết
Ta có MB và BP là hai tiếp tuyến tại M và P của đường tròn (O) và cắt nhau tại B.
Do đó: BM = BP = 3cm (Tính chất hai tiếp tuyến cắt nhau).
Ta có AM và AE là hai tiếp tuyến tại M và E của đường tròn (O) và cắt nhau tại A.
Do đó: AM = AE = 6cm (Tính chất hai tiếp tuyến cắt nhau).
Ta có CE và CP là hai tiếp tuyến tại E và P của đường tròn (O) và cắt nhau tại C.
Do đó: CE = CP = 8cm (Tính chất hai tiếp tuyến cắt nhau).
Suy ra chu vi tam giác ABC là:
AB + AC + BC = (AM + MB) + (AE + EC) + (BP + PC)
= (6 + 3) + (6 + 8) + (3 + 8) = 34 cm.
- Giải bài tập 5 trang 89 SGK Toán 9 tập 1 - Chân trời sáng tạo
- Giải bài tập 6 trang 89 SGK Toán 9 tập 1 - Chân trời sáng tạo
- Giải bài tập 7 trang 89 SGK Toán 9 tập 1 - Chân trời sáng tạo
- Giải bài tập 8 trang 89 SGK Toán 9 tập 1 - Chân trời sáng tạo
- Giải bài tập 3 trang 89 SGK Toán 9 tập 1 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 9 - Chân trời sáng tạo - Xem ngay