Giải bài tập 4 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo>
Tính diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số (y = {x^3} + 1), (y = 2) và hai đường thẳng (x = - 1), (x = 2).
Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa
Đề bài
Tính diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số \(y = {x^3} + 1\), \(y = 2\) và hai đường thẳng \(x = - 1\), \(x = 2\).
Phương pháp giải - Xem chi tiết
Diện tích hình phẳng giới hạn bởi đồ thị các hàm số \(y = f\left( x \right)\), \(y = g\left( x \right)\) và hai đường thẳng \(x = a\), \(x = b\) là \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).
Lời giải chi tiết
Diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số \(y = {x^3} + 1\), \(y = 2\) và hai đường thẳng \(x = - 1\), \(x = 2\) là \(S = \int\limits_{ - 1}^2 {\left| {\left( {{x^3} + 1} \right) - 2} \right|dx} = \int\limits_{ - 1}^2 {\left| {{x^3} - 1} \right|dx} \)
Ta có \({x^3} - 1 = 0 \Leftrightarrow x = 1\). Do đó:
\(S = \int\limits_{ - 1}^1 {\left| {{x^3} - 1} \right|dx} + \int\limits_1^2 {\left| {{x^3} - 1} \right|dx} = \left| {\int\limits_{ - 1}^1 {\left( {{x^3} - 1} \right)dx} } \right| + \left| {\int\limits_1^2 {\left( {{x^3} - 1} \right)dx} } \right|\)
\( = \left| {\left. {\left( {\frac{{{x^4}}}{4} - x} \right)} \right|_{ - 1}^1} \right| + \left| {\left. {\left( {\frac{{{x^4}}}{4} - x} \right)} \right|_1^2} \right| = \left| { - 2} \right| + \left| {\frac{{11}}{4}} \right| = \frac{{19}}{4}\)
- Giải bài tập 5 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải bài tập 6 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải bài tập 7 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải bài tập 8 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải bài tập 3 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Chân trời sáng tạo
- Lý thuyết Xác suất có điều kiện Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình đường thẳng trong không gian Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Chân trời sáng tạo
- Lý thuyết Xác suất có điều kiện Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình đường thẳng trong không gian Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo