

Giải bài tập 2 trang 97 SGK Toán 9 tập 1 - Chân trời sáng tạo>
Cho tam giác đều ABC. Vẽ nửa đường tròn đường kính BC cắt cạnh AB và AC lần lượt tại D và E. Hãy so sánh các cung (oversetfrown{BD};oversetfrown{BE};oversetfrown{EC}).
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Đề bài
Cho tam giác đều ABC. Vẽ nửa đường tròn đường kính BC cắt cạnh AB và AC lần lượt tại D và E. Hãy so sánh các cung \(\overset\frown{BD};\overset\frown{BE};\overset\frown{EC}\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
- Đọc dữ kiện đề bài để vẽ hình.
- Chứng minh hai tam giác BOD và EOC là tam giác đều, tính \(\widehat {DOE}\) rồi so sánh các góc suy ra \(\overset\frown{BD}=\overset\frown{BE}=\overset\frown{EC}\)
Lời giải chi tiết
Gọi O là tâm đường tròn đường kính BC.
Ta có OB = OD (= R)
Vậy tam giác BOD cân tại O
Mà \(\widehat {DBO}\)= 60o nên tam giác BOD đều
Suy ra \(\widehat {DOB}\)= 60o
OE = DC (= R)
Vậy tam giác EOC cân tại O
Mà \(\widehat {ECO}\)= 60o nên tam giác EOC đều
Suy ra \(\widehat {EOC}\)= 60o
Ta có \(\widehat {BOD} + \widehat {DOE} + \widehat {EOC} = {180^o}\)
Suy ra 60o + \(\widehat {DOE} + {60^o} = {180^o}\) nên \(\widehat {DOE} = {60^o}\)
Vì \(\widehat {BOD} = \widehat {DOE} = \widehat {EOC} = {60^o}\) nên sđ\(\overset\frown{BD}\) = sđ\(\overset\frown{BE}\) = sđ\(\overset\frown{EC}={{60}^{o}}\)
Vậy \(\overset\frown{BD}=\overset\frown{BE}=\overset\frown{EC}\)


- Giải bài tập 3 trang 97 SGK Toán 9 tập 1 - Chân trời sáng tạo
- Giải bài tập 4 trang 97 SGK Toán 9 tập 1 - Chân trời sáng tạo
- Giải bài tập 5 trang 97 SGK Toán 9 tập 1 - Chân trời sáng tạo
- Giải bài tập 6 trang 97 SGK Toán 9 tập 1 - Chân trời sáng tạo
- Giải bài tập 7 trang 97 SGK Toán 9 tập 1 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 9 - Chân trời sáng tạo - Xem ngay