Giải bài tập 15 trang 23 SGK Toán 9 tập 2 - Chân trời sáng tạo


Một người đi xe đạp từ A đến B cách nhau 24 km. Khi đi từ B trở về A, nhờ xuôi gió nên tốc độ lúc về nhanh hơn tốc độ lúc đi là 4 km/h, vì thế thời gian về ít hơn thời gian đi 30 phút. Tính tốc độ của xe đạp khi đi từ A đến B.

Tổng hợp đề thi giữa kì 1 lớp 9 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Khoa học tự nhiên

Đề bài

Một người đi xe đạp từ A đến B cách nhau 24 km. Khi đi từ B trở về A, nhờ xuôi gió nên tốc độ lúc về nhanh hơn tốc độ lúc đi là 4 km/h, vì thế thời gian về ít hơn thời gian đi 30 phút. Tính tốc độ của xe đạp khi đi từ A đến B.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Dựa vào để giải bài toán bằng cách lập phương trình bậc hai như sau:

B1: Lập phương trình

+ Chọn ẩn và đặt điều kiện thích hợp cho ẩn.

+ Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.

+ Lập phương trình biểu thị mối quan hệ giữa các đại lượng.

B2: Giải phương trình nói trên.

B3: Kiểm tra các nghiệm tìm được ở B2 có thỏa mãn điều kiện của ẩn hay không rồi trả lời bài toán.

Lời giải chi tiết

Gọi tốc độ của xe đạp đi từ A đến B là x (km/h) (x > 0)

Suy ra tốc độ của xe đạp đi từ A đến B là x + 4 (km/h)

Thời gian xe đạp đi từ A đến B là: \(\frac{{24}}{x}\)(giờ).

Thời gian xe đạp đi từ B đến A là: \(\frac{{24}}{{x + 4}}\) (giờ).

Vì thời gian đi từ B đến A nhanh hơn đi từ A đến B là 30 phút = \(\frac{1}{2}\) giờ nên ta có phương trình:

\(\frac{{24}}{x}\)- \(\frac{{24}}{{x + 4}}\) = \(\frac{1}{2}\).

Biến đổi phương trình trên, ta được:

24.2.(x + 4)- 24.2.x = x.(x + 4) hay \({x^2} + 4x - 192 = 0\)

Giải phương trình trên, ta được \({x_1} = 12(TM),{x_2} =  - 16(L)\)

Vậy tốc độ của xe đạp đi từ A đến B là 12 km/h.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Chân trời sáng tạo - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí