Giải bài 9 trang 34 sách bài tập toán 11 - Cánh diều


Biểu thức \(P = \sqrt[3]{{{x^2}\sqrt {{x^3}} }}\) với \(x > 0\) được rút gọn bằng:

Đề bài

Biểu thức \(P = \sqrt[3]{{{x^2}\sqrt {{x^3}} }}\) với \(x > 0\) được rút gọn bằng:

A. \(P = {x^{\frac{5}{3}}}\)

B. \(P = {x^{\frac{7}{6}}}\)

C. \(P = {x^{\frac{1}{3}}}\)

D. \(P = {x^{\frac{5}{6}}}\)

Phương pháp giải - Xem chi tiết

Sử dụng công thức  \(\sqrt[n]{{{a^m}}} = {a^{\frac{m}{n}}}\) và \({a^m}.{a^n} = {a^{m + n}}\)  với \(a > 0;m \in Z;n \in {N^*}\)

Lời giải chi tiết

\(P = \sqrt[3]{{{x^2}\sqrt {{x^3}} }} = {\left( {{x^2}.{x^{\frac{3}{2}}}} \right)^{\frac{1}{3}}} = {x^{\frac{2}{3}}}.{x^{\frac{1}{2}}} = {x^{\frac{2}{3} + \frac{1}{2}}} = {x^{\frac{7}{6}}}\)

Chọn đáp án B.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí