Giải bài 8 trang 15 sách bài tập toán 12 - Chân trời sáng tạo


Tính các tích phân sau: a) (intlimits_{ - 1}^2 {left| {{x^2} + x - 2} right|dx} ); b) (intlimits_{ - 1}^1 {left| {{e^x} - 1} right|dx} ).

Tổng hợp đề thi giữa kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Tính các tích phân sau:

a) \(\int\limits_{ - 1}^2 {\left| {{x^2} + x - 2} \right|dx} \);

b) \(\int\limits_{ - 1}^1 {\left| {{e^x} - 1} \right|dx} \).

Phương pháp giải - Xem chi tiết

Sử dụng tính chất:

• \(\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx}  = \int\limits_a^b {f\left( x \right)dx}  + \int\limits_a^b {g\left( x \right)dx} \).

• \(\int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]dx}  = \int\limits_a^b {f\left( x \right)dx}  - \int\limits_a^b {g\left( x \right)dx} \).

Lời giải chi tiết

a) \({x^2} + x - 2 = 0 \Leftrightarrow x = 1\) hoặc \({\rm{x}} =  - 2\) (loại)

Bảng xét dấu trên đoạn \(\left[ { - 1;2} \right]\):

Do đó:

\(\begin{array}{l}\int\limits_{ - 1}^2 {\left| {{x^2} + x - 2} \right|dx}  = \int\limits_{ - 1}^1 {\left| {{x^2} + x - 2} \right|dx}  + \int\limits_1^2 {\left| {{x^2} + x - 2} \right|dx}  = \int\limits_{ - 1}^1 {\left[ { - \left( {{x^2} + x - 2} \right)} \right]dx}  + \int\limits_1^2 {\left( {{x^2} + x - 2} \right)dx} \\ =  - \left. {\left( {\frac{{{x^3}}}{3} + \frac{{{x^2}}}{2} - 2x} \right)} \right|_{ - 1}^1 + \left. {\left( {\frac{{{x^3}}}{3} + \frac{{{x^2}}}{2} - 2x} \right)} \right|_1^2 = \frac{{31}}{6}\end{array}\)

b) \({e^x} - 1 = 0 \Leftrightarrow {e^x} = 1 \Leftrightarrow x = 0\).

Bảng xét dấu trên đoạn \(\left[ { - 1;1} \right]\):

Do đó:

\(\begin{array}{l}\int\limits_{ - 1}^1 {\left| {{e^x} - 1} \right|dx}  = \int\limits_{ - 1}^0 {\left| {{e^x} - 1} \right|dx}  + \int\limits_0^1 {\left| {{e^x} - 1} \right|dx}  = \int\limits_{ - 1}^0 {\left[ { - \left( {{e^x} - 1} \right)} \right]dx}  + \int\limits_0^1 {\left( {{e^x} - 1} \right)dx} \\ =  - \left. {\left( {{e^x} - x} \right)} \right|_{ - 1}^0 + \left. {\left( {{e^x} - x} \right)} \right|_0^1 = e + \frac{1}{e} - 2\end{array}\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí