Giải bài 11 trang 15 sách bài tập toán 12 - Chân trời sáng tạo>
Cho hàm số (fleft( x right) = left{ begin{array}{l}{x^2},x le 1frac{1}{x},x > 1end{array} right.). a) Chứng tỏ rằng hàm số (fleft( x right)) liên tục trên (mathbb{R}). b) Tính (intlimits_{ - 1}^2 {fleft( x right)dx} ).
Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa
Đề bài
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}{x^2},x \le 1\\\frac{1}{x},x > 1\end{array} \right.\).
a) Chứng tỏ rằng hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\).
b) Tính \(\int\limits_{ - 1}^2 {f\left( x \right)dx} \).
Phương pháp giải - Xem chi tiết
‒ Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\) thì hàm số liên tục tại điểm \(x = {x_0}\).
‒ Sử dụng công thức: \(\int {{x^\alpha }dx} = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C\).
Lời giải chi tiết
a) Xét hàm số \(f\left( x \right) = \left\{ \begin{array}{l}{x^2},x \le 1\\\frac{1}{x},x > 1\end{array} \right.\).
Hàm số \(f\left( x \right)\) liên tục trên các khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\).
Ta có: \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} {x^2} = 1;\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{1}{x} = 1;f\left( 1 \right) = 1\)
Vì \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = 1\) nên hàm số \(f\left( x \right)\) liên tục tại \(x = 1\).
Vậy hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\).
b) \(\int\limits_{ - 1}^2 {f\left( x \right)dx} = \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_1^2 {f\left( x \right)dx} = \int\limits_{ - 1}^1 {{x^2}dx} + \int\limits_1^2 {\frac{1}{x}dx} = \left. {\frac{{{x^3}}}{3}} \right|_{ - 1}^1 + \left. {\ln {\rm{x}}} \right|_1^2 = \frac{2}{3} + \ln 2\).
- Giải bài 12 trang 15 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 13 trang 16 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 10 trang 15 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 9 trang 15 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 8 trang 15 sách bài tập toán 12 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 8 trang 37 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 7 trang 37 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 6 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 5 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 4 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 7 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 6 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 5 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 4 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
- Giải bài 3 trang 87 sách bài tập toán 12 - Chân trời sáng tạo