Giải bài 55 trang 24 sách bài tập toán 12 - Cánh diều


Cho hàm số (y = fleft( x right)) xác định trên (mathbb{R}backslash left{ { - 2} right}), liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau: Khẳng định nào sau đây là đúng? A. Đồ thị hàm số có tiệm cận đứng là đường thẳng (x = - 2) và không có tiệm cận ngang. B. Đồ thị hàm số có tiệm cận đứng là đường thẳng (x = - 2) và tiệm cận ngang là đường thẳng (y = 3). C. Đồ thị hàm số không có tiệm cận đứng và tiệm cận ngang là đường thẳng (y = - 2). D. Đồ thị hàm

Đề bài

Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ { - 2} \right\}\), liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:

Khẳng định nào sau đây là đúng?

A. Đồ thị hàm số có tiệm cận đứng là đường thẳng \(x =  - 2\) và không có tiệm cận ngang.

B. Đồ thị hàm số có tiệm cận đứng là đường thẳng \(x =  - 2\) và tiệm cận ngang là đường thẳng \(y = 3\).

C. Đồ thị hàm số không có tiệm cận đứng và tiệm cận ngang là đường thẳng \(y =  - 2\).      

D. Đồ thị hàm số có tiệm cận đứng là đường thẳng \(x =  - 2\) và tiệm cận ngang là đường thẳng \(y = 3\).

Phương pháp giải - Xem chi tiết

‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) hoặc \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right)\), nếu một trong các giới hạn sau thoả mãn: \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) =  + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) =  - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) =  + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) =  - \infty \)

thì đường thẳng \(x = {x_0}\) là đường tiệm cận đứng.

‒ Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang.

Lời giải chi tiết

Dựa vào bảng biến thiên ta có:

• \(\mathop {\lim }\limits_{x \to  - {2^ - }} f\left( x \right) =  - \infty \).

Vậy \(x =  - 2\) là tiệm cận đứng của đồ thị hàm số đã cho.

• \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) =  + \infty ;\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) =  - \infty \).

Vậy hàm số không có tiệm cận ngang.

Chọn A.


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 56 trang 25 sách bài tập toán 12 - Cánh diều

    Cho hàm số (y = fleft( x right)) liên tục trên (mathbb{R}) và đồ thị có đường tiệm cận ngang như Hình 10. Hàm số (y = fleft( x right)) có thể là hàm số nào trong các hàm số sau? A. (fleft( x right) = frac{{3{{rm{x}}^2}}}{{{x^2} + x + 1}}). B. (fleft( x right) = frac{{2{{rm{x}}^2}}}{{{x^2} + x + 1}}). C. (fleft( x right) = frac{{{{rm{x}}^2}}}{{{x^2} + x + 1}}). D. (fleft( x right) = frac{{{{rm{x}}^2}}}{{3{x^2} + x + 1}}).

  • Giải bài 57 trang 25 sách bài tập toán 12 - Cánh diều

    Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ 1 \right\}\) và có đồ thị như Hình 11. Các đường tiệm cận của đồ thị hàm số là: A. Tiệm cận đứng là đường thẳng \(x = 1\) và tiệm cận xiên là đường thẳng \(y = - x\). B. Tiệm cận đứng là đường thẳng \(x = - 1\) và tiệm cận xiên là đường thẳng \(y = x\). C. Tiệm cận đứng là đường thẳng \(x = 1\) và tiệm cận xiên là đường thẳng \(y = x\). D. Tiệm cận đứng là đường thẳng \(x = 1\) và tiệm cận xiên là đường th

  • Giải bài 58 trang 25 sách bài tập toán 12 - Cánh diều

    Giao điểm (I) của hai đường tiệm cận của đồ thị hàm số (y = frac{{ - 5{rm{x}} + 3}}{x}) là: A. (Ileft( {1; - 5} right)). B. (Ileft( {0; - 5} right)). C. (Ileft( {0;5} right)). D. (Ileft( {1;5} right)).

  • Giải bài 59 trang 25 sách bài tập toán 12 - Cánh diều

    Số đường tiệm cận của đồ thị hàm số (y = frac{{2{rm{x}}}}{{{x^2} - 4}}) là: A. 1. B. 2. C. 3. D. 0.

  • Giải bài 60 trang 25 sách bài tập toán 12 - Cánh diều

    Số đường tiệm cận của đồ thị hàm số (y = frac{{{x^2} - 1}}{{{x^2} + 1}}) là: A. 1. B. 2. C. 3. D. 0.

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Cánh diều - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí