Giải bài 55 trang 24 sách bài tập toán 12 - Cánh diều>
Cho hàm số (y = fleft( x right)) xác định trên (mathbb{R}backslash left{ { - 2} right}), liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau: Khẳng định nào sau đây là đúng? A. Đồ thị hàm số có tiệm cận đứng là đường thẳng (x = - 2) và không có tiệm cận ngang. B. Đồ thị hàm số có tiệm cận đứng là đường thẳng (x = - 2) và tiệm cận ngang là đường thẳng (y = 3). C. Đồ thị hàm số không có tiệm cận đứng và tiệm cận ngang là đường thẳng (y = - 2). D. Đồ thị hàm
Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa
Đề bài
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ { - 2} \right\}\), liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:
Khẳng định nào sau đây là đúng?
A. Đồ thị hàm số có tiệm cận đứng là đường thẳng \(x = - 2\) và không có tiệm cận ngang.
B. Đồ thị hàm số có tiệm cận đứng là đường thẳng \(x = - 2\) và tiệm cận ngang là đường thẳng \(y = 3\).
C. Đồ thị hàm số không có tiệm cận đứng và tiệm cận ngang là đường thẳng \(y = - 2\).
D. Đồ thị hàm số có tiệm cận đứng là đường thẳng \(x = - 2\) và tiệm cận ngang là đường thẳng \(y = 3\).
Phương pháp giải - Xem chi tiết
‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) hoặc \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right)\), nếu một trong các giới hạn sau thoả mãn: \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \)
thì đường thẳng \(x = {x_0}\) là đường tiệm cận đứng.
‒ Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang.
Lời giải chi tiết
Dựa vào bảng biến thiên ta có:
• \(\mathop {\lim }\limits_{x \to - {2^ - }} f\left( x \right) = - \infty \).
Vậy \(x = - 2\) là tiệm cận đứng của đồ thị hàm số đã cho.
• \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = - \infty \).
Vậy hàm số không có tiệm cận ngang.
Chọn A.
- Giải bài 56 trang 25 sách bài tập toán 12 - Cánh diều
- Giải bài 57 trang 25 sách bài tập toán 12 - Cánh diều
- Giải bài 58 trang 25 sách bài tập toán 12 - Cánh diều
- Giải bài 59 trang 25 sách bài tập toán 12 - Cánh diều
- Giải bài 60 trang 25 sách bài tập toán 12 - Cánh diều
>> Xem thêm