Bài 23.11, 23.12, 23.13 trang 56,57 SBT Vật lí 10


Giải bài 23.11, 23.12, 23.13 trang 56,57 sách bài tập vật lý 10. Một quả cầu khối lượng 2 kg chuyển động với vận tốc 3 m/s, tới va chạm vào quả cầu khối lượng 3 kg đang chuyển động với vận tốc 1 m/s cùng chiều với quả cầu thứ nhất trên một máng thẳng ngang. Sau va chạm, quả cầu thứ nhất chuyển động với vận tốc 0,6 m/s theo chiều ban đầu. Bỏ qua lực ma sát và lực cản. Xác định chiều chuyển động và vận tốc của quả cầu thứ hai.

Lựa chọn câu để xem lời giải nhanh hơn

23.11.

Một quả cầu khối lượng 2 kg chuyển động với vận tốc 3 m/s, tới va chạm vào quả cầu khối lượng 3 kg đang chuyển động với vận tốc 1 m/s cùng chiều với quả cầu thứ nhất trên một máng thẳng ngang. Sau va chạm, quả cầu thứ nhất chuyển động với vận tốc 0,6 m/s theo chiều ban đầu. Bỏ qua lực ma sát và lực cản. Xác định chiều chuyển động và vận tốc của quả cầu thứ hai.

Phương pháp giải:

Áp dụng định luật bảo toàn động lượng \(\overrightarrow {{p_1}}  + \overrightarrow {{p_2}}  = \overrightarrow {p{'_1}}  + \overrightarrow {p{'_2}} \)

Lời giải chi tiết:

Chọn chiều chuyển động ban đầu của quả cầu thứ nhất là chiều dương. Vì hệ vật gồm hai quả cầu chuyển động theo cùng phương ngang, nên tổng động lượng của hệ vật này có giá trị đại số bằng :

Trước va cham : p0 = m1v1 + m2v2.

Sau va chạm : p = m1v’1 + m2v’2

Áp dụng định luật bảo toàn động lượng, ta có :

p = p0 => m1v’1 + m2v’2 = m1v1 + m2v2

Suy ra:  \({v_2}^\prime = \displaystyle{{({m_1}{v_1} + {m_2}{v_2}) - {m_1}{v_1}^\prime } \over {{m_2}}}\)

Thay v'1 = - 0,6 m/s, ta tìm được

\({v_2}^\prime = \displaystyle{{(2,0.3,0 + 3,0.1,0) - 2,0.0,6} \over {3,0}} \\= 2,6(m/s)\)

Quả cầu thứ hai chuyển động với vận tốc 2,6 m/s theo hướng ban đầu.

23.12.

Một tên lửa mang nhiên liệu có khối lượng tổng cộng là 10000 kg. Khi đang bay theo phương ngang với vận tốc 100 m/s, tên lửa phụt nhanh ra phía sau nó 1000 kg khí nhiên liệu với vận tốc 800 m/s so với tên lửa. Bỏ qua lực cản của không khí. Xác định vận tốc của tên lửa ngay sau khi khối khí phụt ra khỏi nó.

Phương pháp giải:

Áp dụng định luật bảo toàn động lượng \(\overrightarrow {{p_1}}  + \overrightarrow {{p_2}}  = \overrightarrow {p{'_1}}  + \overrightarrow {p{'_2}} \)

Lời giải chi tiết:

Chọn chiều chuyển động ban đầu của tên lửa là chiều dương. Vì hệ vật gồm tên lửa và khối khí chuyển động cùng phương, nên ta có thể biểu diễn tổng động lượng của hệ vật này dưới dạng tổng đại số.

Trước khi khí phụt ra : p0 = MV.

Sau khi khí phụt ra : p = (M - m)V' + m(v + V').

Áp dụng định luật bảo toàn động lượng, ta có :

 p = p0 => (M - m)V' + m(v + V') = M.V

suy ra :  \(V' = \displaystyle{{MV - mv} \over M} = V - {{mv} \over M}\)

Thay v = - 800 m/s, ta tìm được :  \(V' = 100 - \displaystyle{{1000.( - 800)} \over {10000}} = 180(m/s)\)

23.13.

Có một bệ pháo khối lượng 10 tấn có thể chuyển động trên đường ray nằm ngang không ma sát. Trên bệ có gắn một khẩu pháo khối lượng 5 tấn. Giả sử khẩu pháo chứa một viên đạn khối lượng 100 kg và nhả đạn theo phương ngang với vận tốc đầu nòng 500 m/s (vận tốc đối với khẩu pháo). Xác định vận tốc của bệ pháo ngay sau khi bắn, trong các trường hợp :

1. Lúc đầu hệ đứng yên.

2. Trước khi bắn, bệ pháo chuyển động với vận tốc 18 km/h :

a) Theo chiều bắn.

b) Ngược chiều bắn.

Phương pháp giải:

Áp dụng định luật bảo toàn động lượng \(\overrightarrow {{p_1}}  + \overrightarrow {{p_2}}  = \overrightarrow {p{'_1}}  + \overrightarrow {p{'_2}} \)

Lời giải chi tiết:

Chọn chiều chuyển động của viên đạn là chiều dương. Hệ vật gồm bệ pháo, khẩu pháo và viên đạn. Gọi V0 và V là vận tốc của bộ pháo trước và sau khi bắn, còn v là vận tốc đầu nòng của viên đạnẻ Vì các phần của hệ vật đều chuyển động theo cùng phương ngang, nên có thể biểu diễn tổng động lượng của hệ vật này dưới dạng tổng đại số.

Trước khi bắn : p0 = (M1 + M2 + m)V0.

Sau khi bắn : p = (M1 + M2)V + m(v + V).

Áp dụng định luật bảo toàn động lượng :

p = p0 

=> (M1 + M2)V + m(v + V)

= (M1 + M2 + m)V0

suy ra : \(V = \displaystyle{{({M_1} + {M_2} + m){V_0} - mv} \over {{M_1} + {M_2} + m}}\)

trong đó V0, V, v là giá trị đại số của các vận tốc đã cho.

1. Trước khi bắn, nếu bệ pháo đứng yên ( V0 = 0 ), thì ta có :

\(V = - \displaystyle{{mv} \over {{M_1} + {M_2} + m}} \\= - \displaystyle{{100.500} \over {15100}} = - 3,3(m/s)\)

2. Trước khi bắn, nếu bệ pháo chuyển động với V0 = 18 km/h = 5 m/s :

a. Theo chiều bắn viên đạn, thì ta có :

\(V = \displaystyle{{({M_1} + {M_2} + m){V_0} - mv} \over {{M_1} + {M_2} + m}} \\= \displaystyle{{15100.5 - 100.500} \over {15100}} \approx 1,7(m/s)\)

Ngược chiều bắn viên đạn, thì ta có :

\(V = \displaystyle{{({M_1} + {M_2} + m){V_0} - mv} \over {{M_1} + {M_2} + m}} \\= \displaystyle{{15100.( - 5) - 100.500} \over {15100}} \\\approx - 8,3(m/s)\)

Dấu trừ (-) chứng tỏ sau khi bắn, bệ pháo chuyển động với vận tốc V ngược chiều với vận tốc v của viên đạn.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu
  • Bài 23.7, 23.8, 23.9, 23.10 trang 56 SBT Vật lí 10

    Giải bài 23.7, 23.8, 23.9, 23.10 trang 56 sách bài tập vật lý 10. Hai viên bi có khối lượng 2 g và 3 g, chuyển động trên mặt phẳng ngang không ma sát với vận tốc 6 m/s (viên bi 2 g) và 4 m/s (viên bi 3 g) theo hai phương vuông góc (Hình 23.1). Xác định tổng động lượng của hệ hai viên bi.

  • Bài 23.4, 24.5, 23.6 trang 55,56 SBT Vật lí 10

    Giải bài 23.4, 24.5, 23.6 trang 55,56 sách bài tập vật lý 10. Một viên bi thủy tinh khối lượng 5 g chuyển động trên một máng thẳng ngang với vận tốc 2 m/s, tới va chạm vào một viên bi thép khối lượng 10 g đang nằm yên trên cùng máng thẳng đó và đẩy viên bi thép chuyển động với vận tốc 1,5 m/s cùng chiều với chiều chuyển động ban đầu của viên bi thủy tinh.

  • Bài 23.1, 23.2, 23.3 trang 55 SBT Vật lí 10

    Giải bài 23.1, 23.2, 23.3 trang 55 sách bài tập vật lý 10. Một vật khối lượng 1 kg rơi tự do với gia tốc 9,8 m/s2 từ trên cao xuống trong khoảng thời gian 0,5 s. Xung lượng của trọng lực tác dụng lên vật và độ biến thiên động lượng của vật có độ lớn bằng :

Luyện Bài Tập Trắc nghiệm Lí lớp 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí