Giải bài 22 trang 14 sách bài tập toán 12 - Cánh diều


Chứng minh rằng: a) Hàm số \(y = \sqrt {{x^2} - 4} \) nghịch biến trên khoảng \(\left( { - \infty ; - 2} \right)\) và đồng biến trên khoảng \(\left( {2; + \infty } \right)\). b) Hàm số \(y = \ln \left( {{x^2} + 1} \right)\) nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và đồng biến trên khoảng \(\left( {0; + \infty } \right)\). c) Hàm số \(y = {2^{ - {x^2} + 2x}}\) đồng biến trên khoảng \(\left( { - \infty ;1} \right)\) và nghịch biến trên khoảng \(\left( {1; + \infty } \right)\).

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

Chứng minh rằng:

a) Hàm số \(y = \sqrt {{x^2} - 4} \) nghịch biến trên khoảng \(\left( { - \infty ; - 2} \right)\) và đồng biến trên khoảng \(\left( {2; + \infty } \right)\).

b) Hàm số \(y = \ln \left( {{x^2} + 1} \right)\) nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và đồng biến trên khoảng \(\left( {0; + \infty } \right)\).

c) Hàm số \(y = {2^{ - {x^2} + 2x}}\) đồng biến trên khoảng \(\left( { - \infty ;1} \right)\) và nghịch biến trên khoảng \(\left( {1; + \infty } \right)\).

Phương pháp giải - Xem chi tiết

Các bước để tìm khoảng đồng biến, nghịch biến của hàm số \(f\left( x \right)\):

Bước 1. Tìm tập xác định của hàm số \(y = f\left( x \right)\).

Bước 2. Tính đạo hàm \(f'\left( x \right)\). Tìm các điểm \({x_i}\left( {i = 1,2,...,n} \right)\) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại.

Bước 3. Sắp xếp các điểm \({x_i}\) theo thứ tự tăng dần và lập bảng biến thiên.

Bước 4. Căn cứ vào bảng biến thiên, nêu kết luận về các khoảng đồng biến, nghịch biến của hàm số.

Lời giải chi tiết

a) Hàm số có tập xác định là \(\left( { - \infty ; - 2} \right] \cup \left[ {2; + \infty } \right)\).

Ta có: \({y^\prime } = \frac{{{{\left( {{x^2} - 4} \right)}^\prime }}}{{2\sqrt {{x^2} - 4} }} = \frac{{2x}}{{2\sqrt {{x^2} - 4} }} = \frac{x}{{\sqrt {{x^2} - 4} }}\)

Với \(x \in \left( { - \infty ; - 2} \right) \Leftrightarrow \frac{x}{{\sqrt {{x^2} - 4} }} < 0 \Leftrightarrow y' < 0\). Vậy hàm số nghịch biến trên khoảng \(\left( { - \infty ; - 2} \right)\).

Với \(x \in \left( {2; + \infty } \right) \Leftrightarrow \frac{x}{{\sqrt {{x^2} - 4} }} > 0 \Leftrightarrow y' > 0\). Vậy hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right)\).

b) Hàm số có tập xác định là \(\mathbb{R}\).

Ta có:

\({y^\prime } = \frac{{{{\left( {{x^2} + 1} \right)}^\prime }}}{{{x^2} + 1}} = \frac{{2{\rm{x}}}}{{{x^2} + 1}}\)

\(y' = 0\) khi \(x = 0\).

Bảng biến thiên của hàm số:

Vậy hàm số nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và đồng biến trên khoảng \(\left( {0; + \infty } \right)\).

c) Hàm số có tập xác định là \(\mathbb{R}\).

Ta có:

\({y^\prime } = {\left( { - {x^2} + 2{\rm{x}}} \right)^\prime }{.2^{ - {x^2} + 2{\rm{x}}}}.\ln 2 = \left( { - 2{\rm{x}} + 2} \right){.2^{ - {x^2} + 2{\rm{x}}}}.\ln 2\)

\(y' = 0\) khi \(x = 1\).

Bảng biến thiên của hàm số:

Vậy hàm số đồng biến trên khoảng \(\left( { - \infty ;1} \right)\) và nghịch biến trên khoảng \(\left( {1; + \infty } \right)\).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Cánh diều - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí