Giải bài 16 trang 13 sách bài tập toán 12 - Cánh diều


Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và đồ thị hàm số \(y = f'\left( x \right)\) như Hình 7. Số điểm cực trị của hàm số \(y = f\left( x \right)\) là: A. 4. B. 3. C. 2. D. 1.

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và đồ thị hàm số \(y = f'\left( x \right)\) như Hình 7. Số điểm cực trị của hàm số \(y = f\left( x \right)\) là:

A. 4.

B. 3.

C. 2.

D. 1.

Phương pháp giải - Xem chi tiết

Dựa vào đồ thị hàm số \(y = f'\left( x \right)\), lập bảng xét dấu đạo hàm của hàm số \(y = f\left( x \right)\), từ đó xác định số điểm cực trị của hàm số \(y = f\left( x \right)\).

Lời giải chi tiết

Do hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) nên hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\).

Căn cứ vào đồ thị hàm số \(y = f'\left( x \right)\), ta có:

\(f'\left( x \right) = 0\) khi \(x =  - 3,x = 0,x = 2\). Dựa vào vị trí của đồ thị hàm số \(y = f'\left( x \right)\) so với trục hoành, ta có bảng xét dấu \(f'\left( x \right)\) như sau:

Hàm số đạt cực đại tại \(x = 0\). Vậy hàm số có 1 cực trị.

Chọn D.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Cánh diều - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí