Giải bài 19 trang 76 sách bài tập toán 11 - Cánh diều


Quan sát đồ thị hàm số ở hình dưới đây và cho biết các giới hạn sau

Đề bài

Quan sát đồ thị hàm số ở hình dưới đây và cho biết các giới hạn sau: \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right)\), \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right)\), \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} f\left( x \right)\), \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} f\left( x \right)\).

 

Phương pháp giải - Xem chi tiết

Từ đồ thị, để tìm\(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right)\), ta cần xác định khi \(x\) dần tới dương vô cực thì \(f\left( x \right)\) dần tới đâu. Tương tự với \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right)\), \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} f\left( x \right)\), \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} f\left( x \right)\).

Lời giải chi tiết

Từ đồ thị, ta nhận thấy rằng:

+ Khi \(x\) dần tới dương vô cực thì \(f\left( x \right)\) dần tới 1. Như vậy \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = 1\).

+ Khi \(x\) dần tới âm vô cực thì \(f\left( x \right)\) dần tới 1. Như vậy \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) = 1\).

+ Khi \(x\) dần tới \( - 2\) về bên phải thì \(f\left( x \right)\) dần tới âm vô cực. Như vậy \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} f\left( x \right) =  - \infty \).

+ Khi \(x\) dần tới \( - 2\) về bên trái thì \(f\left( x \right)\) dần tới dương vô cực. Như vậy \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} f\left( x \right) =  + \infty \).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí