Giải bài 14 trang 48 sách bài tập toán 12 - Cánh diều


Lập phương trình mặt phẳng (left( P right)) đi qua điểm (Ileft( {1; - 2;4} right)) và vuông góc với hai mặt phẳng (left( Q right):x - y - 2 = 0,left( R right):y + z + 3 = 0).

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

Lập phương trình mặt phẳng \(\left( P \right)\) đi qua điểm \(I\left( {1; - 2;4} \right)\) và vuông góc với hai mặt phẳng \(\left( Q \right):x - y - 2 = 0,\left( R \right):y + z + 3 = 0\).

Phương pháp giải - Xem chi tiết

Lập phương trình tổng quát của mặt phẳng đi qua một điểm và biết cặp vectơ chỉ phương \(\overrightarrow u ,\overrightarrow v \):

Bước 1: Tìm \(\overrightarrow n  = \left[ {\overrightarrow u ,\overrightarrow v } \right]\).

Bước 2: Lập phương trình mặt phẳng \(\left( P \right)\) đi qua điểm \(I\left( {{x_0};{y_0};{z_0}} \right)\) và nhận \(\overrightarrow n \) làm vectơ pháp tuyến.

Lời giải chi tiết

Mặt phẳng \(\left( Q \right)\) có vectơ pháp tuyến \(\overrightarrow {{n_1}}  = \left( {1; - 1;0} \right)\).

Mặt phẳng \(\left( R \right)\) có vectơ pháp tuyến \(\overrightarrow {{n_2}}  = \left( {0;1;1} \right)\).

Vì \(\left( P \right)\) vuông góc với hai mặt phẳng \(\left( Q \right),\left( R \right)\) nên vectơ pháp tuyến của \(\left( P \right)\) vuông góc với cả \(\overrightarrow {{n_1}} \) và \(\overrightarrow {{n_2}} \).

Do đó, \(\left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right] = \left( { - 1; - 1;1} \right)\) là một vectơ pháp tuyến của \(\left( P \right)\).

Phương trình mặt phẳng \(\left( P \right)\) là:

\( - 1\left( {x - 1} \right) - 1\left( {y + 2} \right) + 1\left( {z - 4} \right) = 0 \Leftrightarrow  - x - y + z - 5 = 0\).


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 15 trang 48 sách bài tập toán 12 - Cánh diều

    Cho điểm (Mleft( {{x_0};{y_0};{z_0}} right)). Tính khoảng cách từ (M) đến các mặt phẳng (x - a = 0,y - b = 0,)(z - c = 0).

  • Giải bài 16 trang 48 sách bài tập toán 12 - Cánh diều

    Cho hai mặt phẳng \(\left( {{P_1}} \right):x + 2y - 3z + 5 = 0\) và \(\left( {{P_2}} \right): - 4x - 8y + 12z + 3 = 0\). a) Chứng minh rằng \(\left( {{P_1}} \right)\parallel \left( {{P_2}} \right)\). b) Tính khoảng cách giữa hai mặt phẳng \(\left( {{P_1}} \right),\left( {{P_2}} \right)\).

  • Giải bài 17 trang 48 sách bài tập toán 12 - Cánh diều

    Cho hình chóp (S.ABC) thoả mãn (widehat {ASB} = widehat {BSC} = widehat {CSA} = {90^ circ }). Gọi (H) là hình chiếu vuông góc của (S) trên mặt phẳng (left( {ABC} right)). Chứng minh rằng (frac{1}{{S{H^2}}} = frac{1}{{S{A^2}}} + frac{1}{{S{B^2}}} + frac{1}{{S{C^2}}}).

  • Giải bài 18 trang 48 sách bài tập toán 12 - Cánh diều

    Cho bốn điểm (Aleft( {1;0;0} right),Bleft( {0;2;0} right),Cleft( {0;0;3} right)) và (Dleft( {1;2;3} right)). Chứng minh rằng (A,B,C,D) không đồng phẳng.

  • Giải bài 19 trang 48 sách bài tập toán 12 - Cánh diều

    Cho hình hộp chữ nhật (ABCD.A'B'C'D') có (AB = 2a,AD = 3a,AA' = 4aleft( {a > 0} right)). Gọi (M,N,P) lần lượt là các điểm thuộc các tia (AB,AD,AA') sao cho (AM = a,AN = 2a,AP = 3a). Tính khoảng cách từ điểm (C') đến mặt phẳng (left( {MNP} right)).

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Cánh diều - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí