Đề số 9 – Đề kiểm tra học kì 1 – Toán 10

Bình chọn:
4.9 trên 7 phiếu

Đáp án và lời giải chi tiết Đề số 9 - Đề kiểm tra học kì 1 (Đề thi học kì 1) - Toán 10

Đề bài

I – PHẦN TRẮC NGHIỆM (5 điểm)

Câu 1 : Đồ thị sau đây là của hàm số nào?

A. \(y = {x^2} - 4x - 3\)

B. \(y =  - {x^2} + 4x\)

C. \(y = {x^2} + 4x - 3\)

D. \(y =  - {x^2} + 4x - 3\)

 

Câu 2 : Trong mặt phẳng tọa độ Oxy cho các vectơ \(\overrightarrow a  = \left( {1; - 3} \right);\,\,\overrightarrow b  = \left( {5;2} \right)\). Tọa độ vectơ \(\overrightarrow x  = 2\overrightarrow a  - 3\overrightarrow b \) là:

A. \(\overrightarrow x  = \left( { - 12;13} \right)\)

B. \(\overrightarrow x  = \left( {12;13} \right)\)

C. \(\overrightarrow x  = \left( { - 13; - 12} \right)\)

D. \(\overrightarrow x  = \left( { - 13;12} \right)\)

Câu 3 : Điều kiện xác định của phương trình \(x - 1 + \dfrac{1}{{x - 1}} = \dfrac{x}{{\sqrt x }}\) là:

A. \(x \ge 0;\,\,x \ne 1\)

B. \(x \ge 1\)

C. \(x > 1\)

D. \(x > 0;\,\,x \ne 1\)

Câu 4 : Cho hàm số \(y = \left| {x - 3} \right|\). Chọn khẳng định đúng trong các khẳng định sau về hàm số

A. Hàm số chẵn

B. Hàm số đồng biến trên R

C. Giá trị nhỏ nhất của hàm số là \(y = 0\)

D. Hàm số nghịch biến trên R.

Câu 5 : Số giao điểm của 2 đồ thị hàm số \(\left( {{P_1}} \right):\,\,y =  - {x^2} + x\) và \(\left( {{P_2}} \right):\,\,y = {x^2} - 2x - 3\) là :

A. 1              B. 0

C. 3              D. 2

Câu 6 : Trong mặt phẳng tọa độ Oxy cho 2 điểm \(A\left( {2; - 5} \right)\) và \(B\left( { - 1;3} \right)\). Tọa độ vectơ \(\overrightarrow {AB} \) là:

A. \(\overrightarrow {AB}  = \left( {1; - 2} \right)\)

B. \(\overrightarrow {AB}  = \left( { - 3;8} \right)\)

C. \(\overrightarrow {AB}  = \left( {3; - 8} \right)\)

D. \(\overrightarrow {AB}  = \left( { - 2; - 15} \right)\)

Câu 7 : Số nghiệm của phương trình \(\dfrac{{{x^2} + 6}}{{x - 2}} = \dfrac{{5x}}{{x - 2}}\) là :

A. 3          B. 2

C. 3          D. 0

Câu 8 : Số nghiệm của phương trình \(x\sqrt {x - 2}  = \sqrt {2 - x} \) là:

A. 1           B. 2

C. 3           D. 0

Câu 9 : Tìm tất cả các giá trị của m để hàm số \(y = \sqrt {x - 1}  + \sqrt {m - x} \) xác định trên tập \(\left( {1;3} \right)\) ? Đáp án đúng là :

A. \(1 \le m \le 3\)

B. \(m \ge 3\)

C. \(m < 1\)

D. \(m > 3\)

Câu 10 : Cho parabol \(\left( P \right):\,\,y =  - 3{x^2} + 9x + 2\) và các điểm \(M\left( {2;8} \right);\,\,N\left( {3;56} \right)\). Chọn khẳng định đúng:

A. \(M \in \left( P \right);\,\,N \in \left( P \right)\)

B. \(M \notin \left( P \right);\,\,N \notin \left( P \right)\)

C. \(M \notin \left( P \right);\,\,N \in \left( P \right)\)

D. \(M \in \left( P \right);\,\,N \notin \left( P \right)\)

Câu 11 : Trục đối xứng của đồ thị hàm số \(y = {x^2} - 4x + 3\) là đường thẳng :

A. \(x =  - 2\)

B. \(y =  - 4\)

C. \(y = 2\)

D. \(x = 2\)

Câu 12 : Cho hàm số \(y = {x^2} - 4x + 7\). Chọn khẳng định đúng ?

A. Hàm số đồng biến trên R        

B. Hàm số đồng biến trên khoảng \(\left( { - 2; + \infty } \right)\)

C. Hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right)\)

D. Hàm số nghịch biến trên khoảng \(\left( { - 2; + \infty } \right)\)

Câu 13 : Số giao điểm của đồ thị hàm số \(y = 2{x^2} + x - 5\) với trục hoành là:

A. 0             B. 1

C. 2             D. 3

Câu 14 : Trong mặt phẳng tọa độ Oxy cho \(A\left( {2;5} \right);\,\,B\left( {1;3} \right);\,\,C\left( {5; - 1} \right)\). Tọa độ trọng tâm G của tam giác ABC là:

A. \(G\left( {8;7} \right)\)

B. \(G\left( {\dfrac{8}{3};\dfrac{7}{3}} \right)\)

C. \(G\left( { - \dfrac{8}{3}; - \dfrac{7}{3}} \right)\)

D. \(G\left( { - \dfrac{8}{3};\dfrac{7}{3}} \right)\)

Câu 15 : Tìm m để 3 đường thẳng \({d_1}:\,\,y = x + 1;\,\,{d_2}:\,\,y = 3x - 1;\)\(\,\,{d_3}:\,\,2mx - 4m\) đồng quy (cùng đi qua 1 điểm) ? Đáp án đúng là:

A. \(m = 1\)                        B. \(m =  - 1\)

C. \(m = 0\)                        D. \(m \in \emptyset \)

Câu 16 : Trong mặt phẳng tọa độ Oxy cho hình thang ABCD có đáy lớn CD gấp đôi đáy nhỏ AB. Biết \(A\left( {1;1} \right);\,\,B\left( { - 1;2} \right);\,\,C\left( {0;1} \right)\). Tìm tọa độ điểm ?

A. \(D\left( {4; - 1} \right)\)

B. \(D\left( { - 4; - 1} \right)\)

C. \(D\left( {4;1} \right)\)

D. \(D\left( { - 4;1} \right)\)

Câu 17 : Hàm số nào dưới đây là hàm số lẻ trên tập xác định của nó ?

A. \(y = {x^3} - x + 1\)

B. \(y = {x^4} - 2{x^2} + 1\)

C. \(y = \left| {x + 1} \right| + \left| {x - 1} \right|\)

D. \(y = 2x - {x^3}\)

Câu 18 : Tìm m để đồ thị hàm số \(y = \left| {{x^2} - 3x + 1} \right|\) cắt đường thẳng \(y = m\) tại 4 điểm phân biệt ? Đáp án đúng là:

A. \(0 \le m \le \dfrac{5}{4}\)

B. \(0 < m < \dfrac{5}{4}\)

C. \(m > 0\)

D. \(m > \dfrac{5}{4}\)

Câu 19 : Tập nghiệm của phương trình \(\left( {{m^2} - 9} \right)x + 6 - 2m = 0\) trong trường hợp \({m^2} - 9 \ne 0\) là :

A. \(\left\{ {\dfrac{2}{{m + 3}}} \right\}\)

B. \(\left\{ {\dfrac{2}{{m - 3}}} \right\}\)

C. \(\emptyset \)

D. \(R\)

Câu 20 : Tập nghiệm của phương trình \(\sqrt {2x - 1}  = x - 1\) là :

A. \(\left\{ {2 + \sqrt 2 } \right\}\)

B. \(\emptyset \)

C. \(\left\{ {2 + \sqrt 2 ;2 - \sqrt 2 } \right\}\)

D. \(\left\{ {2 - \sqrt 2 } \right\}\)

Câu 21 : Tìm m để hàm số \(y = \left( {m - \sqrt 5 } \right)x - 2\) nghịch biến trên R ?

A. \(m > \sqrt 5 \)

B. \(m \le \sqrt 5 \)

C. \(m \ge \sqrt 5 \)

D. \(m < \sqrt 5 \)

Câu 22 : Tìm m để hàm số \(y = \left( {m - 2} \right)x + 1\) là hàm số bậc nhất ?

A. \(m \ne 0;\,\,m \ne 2\)

B. \(m \ne 2\)

C. \(\forall m \in R\)

D. \(m \ne 0\).

Câu 23 : Tập xác định của hàm số \(y = \dfrac{{x - 3}}{{x + 2}}\) là :

A. \(R\)                                         

B. \(\left( { - 2; + \infty } \right)\)

C. \(R\backslash \left\{ 2 \right\}\)

D. \(R\backslash \left\{ { - 2} \right\}\)

Câu 24 : Giá trị lớn nhất của hàm số \(y =  - {x^2} + 2x + 3\) trên đoạn \(\left[ {2;3} \right]\) là :

A. 3             B. 4

C. 1             D. 6

Câu 25 : Trong mặt phẳng tọa độ Oxy cho 4 điểm \(A\left( {2;5} \right);\,\,B\left( {1;7} \right);\,\,C\left( {1;5} \right);\,\,D\left( {0;9} \right)\). Ba điểm nào sau đây thẳng hàng.

A. Ba điểm A, B, D

B. Ba điểm A, B, C

C. Ba điểm B, C, D

D. Ba điểm A, C, D

II – PHẦN TỰ LUẬN (5 điểm)

Bài 1  (1 điểm): Giải phương trình \(\sqrt {2{x^2} - 5x + 2}  = x - 2\)

Bài 2 : Cho hệ phương trình \(\left\{ \begin{array}{l}2x - y + 1 = 0\\{x^2} - 3xy + {y^2} = 2x - 5 + {m^2}\end{array} \right.\)

a) (1 điểm) Giải hệ phương trình với \(m = 0\).

b) (0,5 điểm) Tìm m để hệ có nghiệm.

Bài 3 : Trong mặt phẳng tọa độ Oxy cho tam giác ABC với \(A\left( { - 1;1} \right);\,\,B\left( {3;1} \right);\,\,C\left( {2;4} \right)\).

a) (0,5 điểm) Tính \(\overrightarrow {AB} .\overrightarrow {AC} \) ?

b) (0,5 điểm) Tính \(\widehat {BAC}\).

Bài 4 : Cho tam giác ABC. Gọi I là trung điểm của BC; K là điểm thuộc cạnh AC sao cho \(KC = 2AK\).

a) (1 điểm) Biểu diễn các vectơ \(\overrightarrow {AI} ;\,\,\overrightarrow {AK} ;\,\overrightarrow {KI} \) theo 2 vectơ \(\overrightarrow {AB;} \,\,\overrightarrow {AC} \).

b) (0;5 điểm) Xác định vị trí của M sao cho \(2M{A^2} + M{B^2} + M{C^2}\) đạt giá trị nhỏ nhất.

Lời giải chi tiết

I – PHẦN TRẮC NGHIỆM

1. D

2. C

3. D

4. C

5. D

6. B

7. C

8. A

9. B

10. D

11. D

12. C

13. C

14. B

15. B

16. A

17. D

18. B

19. A

20. A

21. D

22. B

23. D

24. A

25. A

II – PHẦN TỰ LUẬN (5 điểm)

Bài 1:

Phương trình có nghiệm duy nhất \(x = 2\).

Bài 2:

a) \(S = \left\{ {\left( {2;5} \right);\left( { - 3; - 5} \right)} \right\}\).

b) \( - \dfrac{5}{2} \le m \le \dfrac{5}{2}\).

Bài 3:

a) \( \overrightarrow {AB} .\overrightarrow {AC}   = 12\)

b) \(\widehat {BAC} = {45^0}\)

Bài 4:

a) \(\overrightarrow {AI}  = \dfrac{1}{2}\overrightarrow {AB}  + \dfrac{1}{2}\overrightarrow {AC} \).

\(\overrightarrow {AK}  = \dfrac{1}{3}\overrightarrow {AC} \).

 \(\overrightarrow {KI}   = \dfrac{1}{2}\overrightarrow {AB}  + \dfrac{1}{6}\overrightarrow {AC} \)

 

b) \(2M{A^2} + M{B^2} + M{C^2}\) nhỏ nhất khi và chỉ khi M là trung điểm của AI.

Xem lời giải chi tiết đề thi học kì 1 tại Tuyensinh247.com

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

Các bài liên quan: - ĐỀ KIỂM TRA HỌC KÌ 1 (ĐỀ THI HỌC KÌ 1) – TOÁN 10

>>Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu