Đề số 13 – Đề kiểm tra học kì 1 – Toán 10

Bình chọn:
4.9 trên 7 phiếu

Đáp án và lời giải chi tiết Đề số 13 - Đề kiểm tra học kì 1 (Đề thi học kì 1) - Toán 10

Đề bài

A. PHẦN TRẮC NGHIỆM (8 điểm)

Câu 1 : Trong mặt phẳng tọa độ Oxy, cho các vectơ \(\overrightarrow u  = \left( {2; - 4} \right);\,\,\overrightarrow a  = \left( { - 1; - 2} \right);\)\(\,\,\overrightarrow b  = \left( {1; - 3} \right)\). Biết \(\overrightarrow u  = m\overrightarrow a  + n\overrightarrow b \), tính \(m - n\).

A. 5                                         B. -2

C. -5                                        D. 2

Câu 2 : Tìm m để hàm số \(y = \left( { - 2m + 1} \right)x + m - 3\) đồng biến trên R?

A. \(m < \dfrac{1}{2}\)

B. \(m > \dfrac{1}{2}\)

C. \(m < 3\)

D. \(m > 3\)

Câu 3 : Cho \(\cot \alpha  =  - \sqrt 2 \,\,\left( {{0^0} \le \alpha  \le {{180}^0}} \right)\). Tính \(\sin \alpha \) và \(\cos \alpha \).

A. \(\sin \alpha  = \dfrac{1}{{\sqrt 3 }};\,\,\cos \alpha  = \dfrac{{\sqrt 6 }}{3}\)

B. \(\sin \alpha  = \dfrac{1}{{\sqrt 3 }};\,\,\cos \alpha  =  - \dfrac{{\sqrt 6 }}{3}\)

C. \(\sin \alpha  = \dfrac{{\sqrt 6 }}{2};\,\,\cos \alpha  = \dfrac{1}{{\sqrt 3 }}\)

D. \(\sin \alpha  = \dfrac{{\sqrt 6 }}{2};\,\,\cos \alpha  =  - \dfrac{1}{{\sqrt 3 }}\)

Câu 4 : Xác định phần bù của tập hợp \(\left( { - \infty ; - 2} \right)\) trong \(\left( { - \infty ;4} \right)\).

A. \(\left( { - 2;4} \right)\)

B. \(\left( { - 2;4} \right]\)

C. \(\left[ { - 2;4} \right)\)

D. \(\left[ { - 2;4} \right]\)

Câu 5 : Xác định số phần tử của tập hợp \(X = \left\{ {n \in N|n\,\, \vdots \,\,4,\,\,n < 2017} \right\}\).

A. 505                                     B. 503

C. 504                                     D. 502

Câu 6 : Cho phương trình \(\left( {2 - m} \right)x = {m^2} - 4\). Có bao nhiêu giá trị của tham số m để phương trình có tập nghiệm là R?

A. vô số                                   B. 2

C. 1                                         D. 0

Câu 7 : Khoảng đồng biến của hàm số \(y = {\left( {2x - 1} \right)^2} + {\left( {3x - 1} \right)^2}\) là:

A. \(\left( {0,6; + \infty } \right)\)

B. \(\left( {\dfrac{5}{{13}}; + \infty } \right)\)

C. \(\left( {\dfrac{2}{3}; + \infty } \right)\)

D. \(\left( {\dfrac{3}{4}; + \infty } \right)\)

Câu 8 : Xác định phần bù của tập hợp \(\left( { - \infty ; - 10} \right) \cup \left[ {10; + \infty } \right) \cup \left\{ 0 \right\}\) trong tập R?

A. \(\left[ { - 10;10} \right)\)

B. \(\left[ { - 10;10} \right]\backslash \left\{ 0 \right\}\)

C. \(\left[ { - 10;0} \right) \cup \left[ {0;10} \right)\)

D. \(\left[ { - 10;0} \right) \cup \left( {0;10} \right)\)

Câu 9 : Cho \(\sin x + \cos x = \dfrac{1}{5}\). Tính \(P = \left| {\sin x - \cos x} \right|\).

A. \(P = \dfrac{3}{5}\)

B. \(P = \dfrac{4}{5}\)

C. \(P = \dfrac{6}{5}\)

D. \(P = \dfrac{7}{5}\)

Câu 10 : Cho tam giác ABC vuông tại A có \(AB = a;\,\,BC = 2a\). Tính \(\overrightarrow {BC} .\overrightarrow {CA}  + \overrightarrow {BA} .\overrightarrow {AC} \) theo a?

A. \(\overrightarrow {BC} .\overrightarrow {CA}  + \overrightarrow {BA} .\overrightarrow {AC}  =  - a\sqrt 3 \)

B. \(\overrightarrow {BC} .\overrightarrow {CA}  + \overrightarrow {BA} .\overrightarrow {AC}  =  - 3{a^2}\)

C. \(\overrightarrow {BC} .\overrightarrow {CA}  + \overrightarrow {BA} .\overrightarrow {AC}  = a\sqrt 3 \)

D. \(\overrightarrow {BC} .\overrightarrow {CA}  + \overrightarrow {BA} .\overrightarrow {AC}  = 3{a^2}\)

Câu 11 : Khẳng định nào sau đây là khẳng định đúng?

A. \(\cos \alpha  =  - \cos \left( {{{180}^0} - \alpha } \right)\)

B. \(\sin \alpha  =  - \sin \left( {{{180}^0} - \alpha } \right)\)

C. \(\tan \alpha  = \tan \left( {{{180}^0} - \alpha } \right)\)

D. \(\cot \alpha  = \cot \left( {{{180}^0} - \alpha } \right)\)

Câu 12 : Điểm A có hoành độ \({x_A} = 1\) và thuộc đồ thị hàm số \(y = mx + 2m - 3\). Tìm m để điểm A nằm trong nửa mặt phẳng tọa độ phía trên trục hoành (không chứa trục hoành).

A. \(m < 0\)                             B. \(m > 0\)

C. \(m \le 1\)                            D. \(m > 1\)

Câu 13 : Cho hình thang ABCD có \(AB = a;\,\,CD = 2a\). Gọi M, N lần lượt là trung điểm của ADBC. Tính độ dài của vectơ \(\overrightarrow {MN}  + \overrightarrow {BD}  + \overrightarrow {CA} \).

A. \(\dfrac{{5a}}{2}\)           B. \(\dfrac{{7a}}{2}\)

C. \(\dfrac{{3a}}{2}\)           D. \(\dfrac{a}{2}\)

Câu 14 : Tìm tập xác định của phương trình \(\dfrac{{\sqrt {x + 1} }}{x} + 3{x^5} - 2017 = 0\)?

A. \(\left[ { - 1; + \infty } \right)\)

B. \(\left( { - 1; + \infty } \right)\backslash \left\{ 0 \right\}\)

C. \(\left[ { - 1; + \infty } \right)\backslash \left\{ 0 \right\}\)

D. \(\left( { - 1; + \infty } \right)\)

Câu 15 : Viết phương trình trục đối xứng của đồ thị hàm số \(y = {x^2} - 2x + 4\)?

A. \(x = 1\)                              B. \(y = 1\)

C. \(y = 2\)                              D. \(x = 2\)

Câu 16 : Cho tam giác ABC có G là trọng tâm, I là trung điểm của BC. Tìm khẳng định sai?

A. \(\left| {\overrightarrow {IB}  + \overrightarrow {IC}  + \overrightarrow {IA} } \right| = IA\)

B. \(\left| {\overrightarrow {IB}  + \overrightarrow {IC} } \right| = \overrightarrow {BC} \)

C. \(\left| {\overrightarrow {AB}  + \overrightarrow {AC} } \right| = 2AI\)

D. \(\left| {\overrightarrow {AB}  + \overrightarrow {AC} } \right| = 3GA\)

Câu 17 : Cho hai tập hợp X, Y thỏa mãn \(X\backslash Y = \left\{ {7;15} \right\}\)  và \(X \cap Y = \left( { - 1;2} \right)\). Xác định số phần tử là số nguyên của X.

A. 2                                         B. 5

C. 3                                         D. 4

Câu 18 : Tìm m để parabol \(\left( P \right):\,\,y = {x^2} - 2\left( {m + 1} \right)x + {m^2} - 3\) cắt trục hoành tại 2 điểm phân biệt có hoành độ \({x_1};{x_2}\) sao cho \({x_1}{x_2} = 1\).

A. \(m = 2\)

B. Không tồn tại m

C. \(m =  - 2\)

D. \(m =  \pm 2\)

Câu 19 : Có nhiều nhất bao nhiêu số nguyên m thuộc nửa khoảng \(\left[ { - 2017;2017} \right)\) để phương trình \(\sqrt {2{x^2} - x - 2m}  = x - 2\) có nghiệm ?

A. 2014                                   B. 2021

C. 2013                                   D. 2020

Câu 20 : Trong mặt phẳng Oxy, cho các điểm \(A\left( { - 4;2} \right);\,\,B\left( {2;4} \right)\). Tính độ dài AB ?

A. \(AB = 2\sqrt {10} \)          B. \(AB = 4\)

C. \(AB = 40\)                         D. \(AB = 2\)

Câu 21 : Tập hợp nào sau đây chỉ gồm các số vô tỷ ?

A. \(Q\backslash {N^*}\)            B. \(R\backslash Q\)

C. \(Q/Z\)                     D. \(R\backslash \left\{ 0 \right\}\)

Câu 22 : Tìm m để phương trình \(\dfrac{{2\left( {2 - 2m - x} \right)}}{{x + 1}} = x - 2m\) có 2 nghiệm phân biệt ?

A. \(m \ne \dfrac{5}{2}\) và \(m \ne 1\)

B. \(m \ne \dfrac{5}{2}\) và \(m \ne \dfrac{3}{2}\)

C. \(m \ne \dfrac{5}{2}\) và \(m \ne \dfrac{1}{2}\)

D. \(m \ne \dfrac{5}{2}\)

Câu 23 : Cho hàm số \(y = \dfrac{{x + 1}}{{x - 1}}\). Tìm tọa độ điểm thuộc đồ thị của hàm số và có tung độ bằng -2.

A. \(\left( {0; - 2} \right)\)

B. \(\left( {\dfrac{1}{3}; - 2} \right)\)

C. \(\left( { - 2; - 2} \right)\)

D. \(\left( { - 1; - 2} \right)\)

Câu 24 : Cho phương trình \(m\left( {3m - 1} \right)x = 1 - 3m\)  (m là tham số). Khẳng định nào sau đây đúng?

A. \(m = \dfrac{1}{3}\) thì phương trình có tập nghiệm \(\left\{ { - \dfrac{1}{m}} \right\}\).

B. \(m \ne 0\) và \(m \ne \dfrac{1}{3}\) thì phương trình có tập nghiệm \(\left\{ { - \dfrac{1}{m}} \right\}\).

C. \(m = 0\) thì phương trình có tập nghiệm R.

D. \(m \ne 0\) và \(m \ne \dfrac{1}{3}\) thì phương trình vô nghiệm.

Câu 25 : Cho hình bình hành ABCD có N là trung điểm của ABG là trọng tâm tam giác ABC. Phân tích \(\overrightarrow {GA} \) theo \(\overrightarrow {BD} \) và \(\overrightarrow {NC} \)?

A. \(\overrightarrow {GA}  = \dfrac{{ - 1}}{3}\overrightarrow {BD}  + \dfrac{2}{3}\overrightarrow {NC} \)

B. \(\overrightarrow {GA}  = \dfrac{1}{3}\overrightarrow {BD}  - \dfrac{4}{3}\overrightarrow {NC} \)

C. \(\overrightarrow {GA}  = \dfrac{1}{3}\overrightarrow {BD}  + \dfrac{2}{3}\overrightarrow {NC} \)

D. \(\overrightarrow {GA}  = \dfrac{1}{3}\overrightarrow {BD}  - \dfrac{2}{3}\overrightarrow {NC} \)

Câu 26 : Cho hình bình hành ABCDN là trung điểm của AB, BC, CA. Khi đó vectơ \(\overrightarrow {AB}  + \overrightarrow {BM}  + \overrightarrow {NA}  + \overrightarrow {BQ} \) là vectơ nào sau đây?

A. \(\overrightarrow 0 \)          B. \(\overrightarrow {BC} \)

C. \(\overrightarrow {AQ} \)          D. \(\overrightarrow {CB} \)

Câu 27 : Tìm phương trình tương đường với phương trình \(\dfrac{{\left( {{x^2} + x - 6} \right)\sqrt {x + 1} }}{{\left| x \right| - 2}} = 0\)  trong các phương trình sau:

A. \(\dfrac{{{x^2} + 4x + 3}}{{\sqrt {x + 3} }} = 0\)

B. \(\sqrt x  + \sqrt {2 + x}  = 1\)

C. \({x^2} = 1\)

D. \({\left( {x - 3} \right)^2} = \dfrac{{ - x}}{{\sqrt {x - 2} }}\)

Câu 28 : Giải phương trình \(\left| {1 - 3x} \right| - 3x + 1 = 0\)

A. \(\left( {\dfrac{1}{3}; + \infty } \right)\)

B. \(\left\{ {\dfrac{1}{2}} \right\}\)

C. \(\left( { - \infty ;\dfrac{1}{3}} \right]\)

D. \(\left[ {\dfrac{1}{3}; + \infty } \right)\)

Câu 29 : Cho tam giác ABC và điểm I thỏa mãn \(\overrightarrow {IA}  = 3\overrightarrow {IB} \). Phân tích \(\overrightarrow {CI} \) theo \(\overrightarrow {CA} \) và \(\overrightarrow {CB} \).

A. \(\overrightarrow {CI}  = \dfrac{1}{2}\left( {\overrightarrow {CA}  - 3\overrightarrow {CB} } \right)\)

B. \(\overrightarrow {CI}  = \overrightarrow {CA}  - 3\overrightarrow {CB} \)

C. \(\overrightarrow {CI}  = \dfrac{1}{2}\left( {3\overrightarrow {CB}  - \overrightarrow {CA} } \right)\)

D. \(\overrightarrow {CI}  = 3\overrightarrow {CB}  - \overrightarrow {CA} \)

Câu 30 : Cho tam giác ABC có \(A\left( {5;3} \right);\,\,B\left( {2; - 1} \right);\,\,C\left( { - 1;5} \right)\). Tìm tọa độ trực tâm H của tam giác ABC.

A. \(H\left( { - 3;2} \right)\)

B. \(H\left( { - 3; - 2} \right)\)

C. \(H\left( {3;2} \right)\)

D. \(H\left( {3; - 2} \right)\)

Câu 31 : Đồ thị bên là của hàm số nào sau đây?

A. \(y =  - {x^2} - 2x + 3\)

B. \(y = {x^2} + 2x - 2\)

C. \(y = 2{x^2} - 4x - 2\)

C. \(y = {x^2} - 2x - 1\)

 

Câu 32 : Tìm tập xác định của hàm số \(y = \dfrac{1}{{x - 3}} + \sqrt {x - 1} \).

A. \(D = \left( {3; + \infty } \right)\)

B. \(D = \left( {1; + \infty } \right)\backslash \left\{ 3 \right\}\)

C. \(D = \left[ {3; + \infty } \right)\)

D. \(D = \left[ {1; + \infty } \right)\backslash \left\{ 3 \right\}\)

Câu 33 : Trên mặt phẳng tọa độ Oxy, cho \(\Delta ABC\) vuông tại A có \(B\left( {1; - 3} \right)\) và \(C\left( {1;2} \right)\). Tìm tọa độ điểm H là chân đường cao kẻ từ đỉnh A của tam giác ABC, biết \(AB = 3;\,\,AC = 4\) .

A. \(H\left( {1;\dfrac{{24}}{5}} \right)\)

B. \(H\left( {1; - \dfrac{6}{5}} \right)\)

C. \(H\left( {1;\dfrac{{ - 24}}{5}} \right)\)

D. \(H\left( {1;\dfrac{6}{5}} \right)\)

Câu 34 : Cho hai tập hợp \(X = \left\{ {1;2;4;7;9} \right\};\,\,Y = \left\{ { - 1;0;7;10} \right\}\), tập hợp \(X \cup Y\) có bao nhiêu phần tử?

A. 9                                         B. 7

C. 8                                         D. 10

Câu 35 : Trong mặt phẳng tọa độ Oxy, cho các vectơ \(\overrightarrow u  = \left( { - 2;1} \right)\) và \(\overrightarrow v  = 3\overrightarrow i  - m\overrightarrow j \). Tìm m để hai vectơ \(\overrightarrow u ;\,\,\overrightarrow v \) cùng phương?

A. \(\dfrac{{ - 2}}{3}\)          B. \(\dfrac{2}{3}\)

C. \(\dfrac{{ - 3}}{2}\)          D. \(\dfrac{3}{2}\)

Câu 36 : Tìm m để hàm số \(y = {x^2} - 2x + 2m + 3\) có giá trị lớn nhất trên \(\left[ {2;5} \right]\) bằng -3.

A. \(m =  - 3\)

B. \(m =  - 9\)

C. \(m = 1\)

D. \(m = 0\)

Câu 37 : Cho hình vuông ABCD có cạnh bằng 1. Hai điểm M, N thay đổi lần lượt trên AB, D sao cho \(AM = x\,\,\left( {0 \le x \le 1} \right)\) và \(DN = y\,\,\left( {0 \le y \le 1} \right)\). Tìm mối liên hệ giữa xy sao cho \(CM \bot BN\).

A. \(x - y = 0\)

B. \(x - y\sqrt 2  = 0\)

C. \(x + y = 1\)

D. \(x - y\sqrt 3  = 0\)

Câu 38 : Xác định các hệ số ab để Parabol \(\left( P \right):\,\,y = a{x^2} + 4x - b\) có đỉnh \(I\left( { - 1; - 5} \right)\)

A. \(\left\{ \begin{array}{l}a = 3\\b =  - 2\end{array} \right.\)

B. \(\left\{ \begin{array}{l}a = 3\\b = 2\end{array} \right.\)

C. \(\left\{ \begin{array}{l}a = 2\\b = 3\end{array} \right.\)

D. \(\left\{ \begin{array}{l}a = 2\\b =  - 3\end{array} \right.\)

Câu 39 : Cho P là mệnh đề đúng, Q là mệnh đề sai, chọn mệnh đề đúng trong các mệnh đề sau:

A. \(P \Rightarrow \overline P \)

B. \(P \Leftrightarrow Q\)

C. \(\overline {P \Rightarrow Q} \)

D. \(\overline Q  \Rightarrow \overline P \) 

Câu 40 : Tìm m để Parabol \(\left( P \right):\,\,y = m{x^2} - 2x + 3\) có trục đối xứng đi qua điểm \(A\left( {2;3} \right)\)?

A. \(m = 2\)

B. \(m =  - 1\)

C. \(m = 1\)

D. \(m = \dfrac{1}{2}\)

II. PHẦN TỰ LUẬN (2 điểm)

Câu 1 : Giải phương trình \({x^2} + \dfrac{1}{{\sqrt {1 - x} }} = 3x + \dfrac{1}{{\sqrt {1 - x} }}\,\,\,\left( 1 \right)\)

Câu 2 : Trên mặt phẳng tọa độ Oxy, cho \(\overrightarrow a  = \left( {2 + x; - 3} \right)\) và \(\overrightarrow b  = \left( {1;2} \right)\). Đặt \(\overrightarrow u  = 2\overrightarrow a  + \overrightarrow b \). Gọi \(\overrightarrow v  = \left( { - 5;8} \right)\) là vectơ ngược chiều với \(\overrightarrow u \). Tìm x biết \(\left| {\overrightarrow v } \right| = 2\left| {\overrightarrow u } \right|\).

Lời giải chi tiết

I. PHẦN TRẮC NGHIỆM

1. B

2. A

3. B

4. C

5. A

6. C

7. B

8. D

9. D

10. D

11. A

12. D

13. C

14. C

15. A

16. B

17. D

18. A

19. A

20. A

21. B

22. B

23. B

24. B

25. D

26. A

27. A

28. A

29. C

30. C

31. D

32. D

33. B

34. C

35. D

36. A

37. A

38. C

39. C

40. D

II. PHẦN TỰ LUẬN

Câu 1:

ĐK: \(1 - x > 0 \Leftrightarrow x < 1\)

\(\begin{array}{l}{x^2} + \dfrac{1}{{\sqrt {1 - x} }} = 3x + \dfrac{1}{{\sqrt {1 - x} }}\\ \Leftrightarrow {x^2} - 3x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\,\,\left( {tm} \right)\\x = 3\,\,\left( {ktm} \right)\end{array} \right.\end{array}\)

Vậy \(x = 1\) là nghiệm của phương trình.

Câu 2:

\(\begin{array}{l}\overrightarrow u  = 2\overrightarrow a  + \overrightarrow b  = \left( {4 + 2x + 1; - 6 + 2} \right) = \left( {2x + 5; - 4} \right)\\ \Rightarrow \left| {\overrightarrow u } \right| = \sqrt {{{\left( {2x + 5} \right)}^2} + 16} \\\left| {\overrightarrow v } \right| = \sqrt {25 + 64}  = \sqrt {89} ;\,\,\left| {\overrightarrow v } \right| = 2\left| {\overrightarrow u } \right|\\ \Leftrightarrow \sqrt {89}  = 2\sqrt {{{\left( {2x + 5} \right)}^2} + 16} \\ \Leftrightarrow 89 = 4{\left( {2x + 5} \right)^2} + 64 \\\Leftrightarrow {\left( {2x + 5} \right)^2} = \dfrac{{25}}{4}\\ \Leftrightarrow \left[ \begin{array}{l}2x + 5 = \dfrac{5}{2}\\2x + 5 =  - \dfrac{5}{2}\end{array} \right. \\\Leftrightarrow \left[ \begin{array}{l}x = \dfrac{{ - 5}}{4}\\x = \dfrac{{ - 15}}{4}\end{array} \right.\end{array}\)

Khi \(x = \dfrac{{ - 5}}{4}\) \( \Rightarrow \overrightarrow u  = \left( {\dfrac{5}{2}; - 4} \right) = \dfrac{{ - 1}}{2}\left( { - 5;8} \right) = \dfrac{{ - 1}}{2}\overrightarrow v \,\,\left( {tm} \right)\)

Khi \(x = \dfrac{{ - 15}}{4} \) \(\Rightarrow \overrightarrow v  = \left( {\dfrac{{ - 5}}{2}; - 4} \right) = \dfrac{{ - 1}}{2}\left( {5;8} \right)\,\,\left( {ktm} \right)\)

Vậy \(x = \dfrac{{ - 5}}{4}\).

Xem lời giải chi tiết đề thi học kì 1 tại Tuyensinh247.com

 

Loigiaihay.com

 

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

>>Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Gửi văn hay nhận ngay phần thưởng