Chương 4 Đường thẳng và mặt phẳng. Quan hệ song song trong không gian

Bình chọn:
4.6 trên 44 phiếu
Bài 1 trang 99

Cho hình chóp \(S.ABCD\), gọi \(O\) là giao điểm của \(AC\) và \(B{\rm{D}}\). Lấy \(M,N\) lần lượt thuộc các cạnh \(SA,SC\). a) Chứng minh đường thẳng \(MN\) nằm trong mặt phẳng \(\left( {SAC} \right)\). b) Chứng minh \(O\) là điểm chung của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SB{\rm{D}}} \right)\).

Xem lời giải

Bài 7 trang 127

Quan hệ song song trong không gian có tính chất nào trong các tính chất sau?

Xem lời giải

Bài 3 trang 126

Vẽ hình biểu diễn của một hình vuông nội tiếp trong một hình tròn.

Xem lời giải

Bài 1 trang 119

Trong mặt phẳng \(\left( P \right)\) cho hình bình hành \(ABCD\). Ta dựng các nửa đường thẳng song song với nhau và nằm về một phía đối với \(\left( P \right)\) lần lượt đi qua các điểm \(A,B,C,D\). Một mặt phẳng \(\left( Q \right)\) cắt bốn nửa đường thẳng nói trên tại \(A',B',C',D'\). Chứng minh rằng:

Xem lời giải

Bài 3 trang 112

Cho hình chóp (S.ABCD) có đáy (ABCD) là hình bình hành và một điểm (M) di động trên cạnh (AD). Một mặt phẳng (left( alpha right)) qua (M), song song với (C{rm{D}}) và (SA), cắt (BC,SC,SD) lần lượt tại (N,P,Q).

Xem lời giải

Bài 4 trang 106

Cho hình chóp (S.ABCD) có đáy là hình bình hành. Gọi (I) là trung điểm của (SD). Hai mặt phẳng (left( {IAC} right)) và (left( {SBC} right)) cắt nhau theo giao tuyến (Cx). Chứng minh rằng (Cxparallel SB).

Xem lời giải

Bài 2 trang 99

Cho hình chóp (S.ABCD) có đáy là hình bình hành. Gọi (M) là trung điểm của (SC).

Xem lời giải

Bài 8 trang 128

Cho hình lăng trụ (ABC.A'B'C'). Gọi (M,N,P,Q) lần lượt là trung điểm của các cạnh (AC,AA',A'C',BC). Ta có:

Xem lời giải

Bài 4 trang 126

Cho hai điểm \(A,B\) nằm ngoài mặt phẳng \(\left( \alpha \right)\) và đường thẳng \(d\) cắt \(\left( \alpha \right)\). Giả sử đường thẳng \(AB\) cắt \(\left( \alpha \right)\) tại điểm \(O\). Gọi \(A'\) và \(B'\) lần lượt là hình chiếu song song của \(A\) và \(B\) trên \(\left( \alpha \right)\) theo phương của đường thẳng \(d\). Ba điểm \(O,A',B'\) có thẳng hàng không? Vì sao? Chọn \(d\) sao cho:

Xem lời giải

Bài 2 trang 120

Cho hình chóp (S.ABCD), đáy (ABCD) là hình bình hành có (O) là giao điểm của hai đường chéo. Gọi (M,N) lần lượt là trung điểm của (SA,SD).

Xem lời giải

Bài 4 trang 112

Cho tứ diện (ABCD) và điểm (M) thuộc cạnh (AB). Gọi (left( alpha right)) là mặt phẳng qua (M), song song với hai đường thẳng (BC) và (AD). Gọi (N,P,Q) lần lượt là giao điểm của mặt phẳng (left( alpha right)) với các cạnh (AC,CD) và (DB).

Xem lời giải

Bài 5 trang 106

Cho hình chóp (S.ABCD) có đáy là hình bình hành, (AC) và (BD) cắt nhau tại (O). Gọi (I) là trung điểm của (SO). Mặt phẳng (left( {ICD} right)) cắt (SA,SB) lần lượt tại (M,N).

Xem lời giải

Bài 3 trang 99

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \(O\) là giao điểm của \(AC\) và \(BD\); \(M,N\) lần lượt là trung điểm của \(SB,SD\); \(P\) thuộc đoạn \(SC\) và không là trung điểm của \(SC\).

Xem lời giải

Bài 9 trang 128

Cho hình hộp \(ABCD.A'B'C'D'\). Gọi \(M\) và \(N\) lần lượt là trung điểm của \(AB\) và \(A'B'\) và \(O\) là một điểm thuộc miền trong của mặt bên \(CC'D'D\). Tìm giao tuyến của mặt phẳng \(\left( {OMN} \right)\) với các mặt của hình hộp.

Xem lời giải

Bài 5 trang 126

Vẽ hình biểu diễn của:

Xem lời giải

Bài 3 trang 120

Cho hai hình vuông \(ABCD\) và \(ABEF\) ở trong hai mặt phẳng khác nhau. Trên các đường chéo \(AC\) và \(BF\) lần lượt lấy các điểm \(M,N\) sao cho \(AM = BN\). Các đường thẳng song song với \(AB\) vẽ từ \(M,N\) lần lượt cắt \(AD,AF\) tại \(M',N'\).

Xem lời giải

Bài 5 trang 112

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang, đáy lớn \(AB\). Gọi \(M\) là trung điểm của \(CD\), \(\left( P \right)\) là mặt phẳng qua \(M\) song song với \(SA\) và \(BC\). Tìm giao tuyến của \(\left( P \right)\) với các mặt của hình chóp \(S.ABCD\).

Xem lời giải

Bài 6 trang 106

Chỉ ra các đường thẳng song song trong mỗi hình sau. Tìm thêm một số ví dụ khác về các đường thẳng song song trong thực tế.

Xem lời giải

Bài 4 trang 99

Cho tứ diện \(ABCD\). Gọi \(E,F,G\) lần lượt là ba điểm trên ba cạnh \(AB,AC,BD\) sao cho \(EF\) cắt \(BC\) tại \(I\left( {I \ne C} \right)\), \(EG\) cắt \(A{\rm{D}}\) tại \(H\left( {H \ne D} \right)\).

Xem lời giải

Bài 10 trang 128

Cho hình chóp \(S.ABCD\) với \(ABCD\) là hình thoi cạnh \(a\), tam giác \(SA{\rm{D}}\) đều. \(M\) là điểm trên cạnh \(AB\), \(\left( \alpha \right)\) là mặt phẳng qua \(M\) và \(\left( \alpha \right)\parallel \left( {SAD} \right)\) cắt \(CD,SC,SB\) lần lượt tại \(N,P,Q\).

Xem lời giải

Xem thêm

Bài viết được xem nhiều nhất