Bài 9.24 trang 97 SGK Toán 11 tập 2 - Kết nối tri thức>
Cho hàm số (y = {x^3} - 3{x^2} + 4x - 1)
Đề bài
Cho hàm số \(y = {x^3} - 3{x^2} + 4x - 1\) có đồ thị là \((C)\). Hệ số góc nhỏ nhất của tiếp tuyến tại một điểm \(M\) trên đồ thị \((C)\) là
A. 1 .
B. 2.
C. -1 .
D. 3 .
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Hệ số góc của tiếp tuyến \(f'\left( {{x_0}} \right)\) với \({x_0}\) là hoành độ tiếp điểm.
Lời giải chi tiết
Hệ số góc của tiếp tuyến tại một điểm \(M\) trên đồ thị \((C)\) là
\(k = y' = 3{x^2} - 6x + 4 = 3\left( {{x^2} - 2x + 1} \right) + 1 = 3{\left( {x - 1} \right)^2} + 1 \ge 1\)
Vậy hệ số góc nhỏ nhất của tiếp tuyến tại một điểm \(M\) trên đồ thị \((C)\) là 1.
Đáp án A
- Bài 9.25 trang 97 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 9.26 trang 98 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 9.27 trang 98 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 9.28 trang 98 SGK Toán 11 tập 2 - Kết nối tri thức
- Bài 9.29 trang 98 SGK Toán 11 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức