Bài 9 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạo>
Một hộp có 5 quả bóng xanh, 6 quả bóng đỏ và 4 quả bóng vàng
Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Một hộp có 5 quả bóng xanh, 6 quả bóng đỏ và 4 quả bóng vàng có kích thước và khối lượng như nhau. Chọn ra ngẫu nhiên từ hộp 4 quả bóng. Tính xác suất của các biến cố:
\(A\): “Cả 4 quả bóng lấy ra có cùng màu”;
\(B\): “Trong 4 bóng lấy ra có đủ cả 3 màu”.
Phương pháp giải - Xem chi tiết
‒ Sử dụng công thức tính xác suất: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\).
‒ Sử dụng quy tắc cộng xác suất cho hai biến cố xung khắc: Cho hai biến cố \(A\) và \(B\) xung khắc. Khi đó: \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\).
Lời giải chi tiết
Chọn ngẫu nhiên từ hộp 4 quả bóng trong tổng số 15 quả bóng có \({C}_{15}^4 = 1365\) cách.
\( \Rightarrow n\left( \Omega \right) = 1365\)
Gọi \({A_1}\) là biến cố “Cả 4 quả bóng lấy ra đều có cùng màu xanh”, \({A_2}\) là biến cố “Cả 4 quả bóng lấy ra đều có cùng màu đỏ”, \({A_3}\) là biến cố “Cả 4 quả bóng lấy ra đều có cùng màu vàng”.
Vậy \(A = {A_1} \cup {A_2} \cup {A_3}\) là biến cố “Cả 4 quả bóng lấy ra có cùng màu”.
Chọn ngẫu nhiên từ hộp 4 quả bóng trong tổng số 5 quả bóng xanh có \({C}_5^4 = 5\) cách.
\( \Rightarrow n\left( {{A_1}} \right) = 5 \Rightarrow P\left( {{A_1}} \right) = \frac{{n\left( {{A_1}} \right)}}{{n\left( \Omega \right)}} = \frac{5}{{1365}} = \frac{1}{{273}}\)
Chọn ngẫu nhiên từ hộp 4 quả bóng trong tổng số 6 quả bóng đỏ có \({C}_6^4 = 15\) cách.
\( \Rightarrow n\left( {{A_2}} \right) = 15 \Rightarrow P\left( {{A_2}} \right) = \frac{{n\left( {{A_2}} \right)}}{{n\left( \Omega \right)}} = \frac{{15}}{{1365}} = \frac{1}{{91}}\)
Chọn ngẫu nhiên từ hộp 4 quả bóng trong tổng số 4 quả bóng vàng có \({C}_4^4 = 1\) cách.
\( \Rightarrow n\left( {{A_3}} \right) = 1 \Rightarrow P\left( {{A_3}} \right) = \frac{{n\left( {{A_3}} \right)}}{{n\left( \Omega\right)}} = \frac{1}{{1365}}\)
\( \Rightarrow P\left( A \right) = P\left( {{A_1}} \right) + P\left( {{A_2}} \right) + P\left( {{A_3}} \right) = \frac{1}{{65}}\)
Gọi \({B_1}\) là biến cố “Lấy ra 2 bóng xanh, 1 bóng đỏ, 1 bóng vàng”, \({B_2}\) là biến cố “Lấy ra 1 bóng xanh, 2 bóng đỏ, 1 bóng vàng”, \({B_3}\) là biến cố “Lấy ra 1 bóng xanh, 1 bóng đỏ, 2 bóng vàng”.
Vậy \(B = {B_1} \cup {B_2} \cup {B_3}\) là biến cố “Trong 4 bóng lấy ra có đủ cả 3 màu”.
Chọn ngẫu nhiên từ hộp 2 quả bóng trong tổng số 5 quả bóng xanh có \({C}_5^2 = 10\) cách.
Chọn ngẫu nhiên từ hộp 1 quả bóng trong tổng số 6 quả bóng đỏ có 6 cách.
Chọn ngẫu nhiên từ hộp 1 quả bóng trong tổng số 4 quả bóng vàng có 4 cách.
\( \Rightarrow n\left( {{B_1}} \right) = 10.6.4 = 240 \Rightarrow P\left( {{B_1}} \right) = \frac{{n\left( {{B_1}} \right)}}{{n\left( \Omega \right)}} = \frac{{240}}{{1365}} = \frac{{16}}{{91}}\)
Chọn ngẫu nhiên từ hộp 1 quả bóng trong tổng số 5 quả bóng xanh có 5 cách.
Chọn ngẫu nhiên từ hộp 2 quả bóng trong tổng số 6 quả bóng đỏ có \({C}_6^2 = 15\) cách.
Chọn ngẫu nhiên từ hộp 1 quả bóng trong tổng số 4 quả bóng vàng có 4 cách.
\( \Rightarrow n\left( {{B_2}} \right) = 5.15.4 = 300 \Rightarrow P\left( {{B_2}} \right) = \frac{{n\left( {{B_2}} \right)}}{{n\left( \Omega \right)}} = \frac{{300}}{{1365}} = \frac{{20}}{{91}}\)
Chọn ngẫu nhiên từ hộp 1 quả bóng trong tổng số 5 quả bóng xanh có 5 cách.
Chọn ngẫu nhiên từ hộp 1 quả bóng trong tổng số 6 quả bóng đỏ có 6 cách.
Chọn ngẫu nhiên từ hộp 2 quả bóng trong tổng số 4 quả bóng vàng có \({C}_4^2 = 6\) cách.
\( \Rightarrow n\left( {{B_3}} \right) = 5.6.6 = 180 \Rightarrow P\left( {{B_3}} \right) = \frac{{n\left( {{B_3}} \right)}}{{n\left( \Omega \right)}} = \frac{{180}}{{1365}} = \frac{{12}}{{91}}\)
\( \Rightarrow P\left( B \right) = P\left( {{B_1}} \right) + P\left( {{B_2}} \right) + P\left( {{B_3}} \right) = \frac{{48}}{{91}}\)
- Bài 10 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạo
- Bài 11 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạo
- Bài 12 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạo
- Bài 13 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạo
- Bài 8 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố giao và quy tắc nhân xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo