Bài 8 trang 92 SGK Toán 7 tập 2

Bình chọn:
4.5 trên 33 phiếu

Giải bài 8 trang 92 SGK Toán 7 tập 2. a)∆ABE= ∆HBE. b)BE là đường trung trực của đoạn thẳng AH.

Đề bài

Cho tam giác ABC vuông tại A; đường phân giác BE. Kẻ EH vuông góc với BC (\(H \in BC)\). Gọi K là giao điểm của AB và HE. Chứng minh rằng:

a) ∆ABE= ∆HBE.

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC.

d) AE < EC.

Phương pháp giải - Xem chi tiết

- Áp dụng tính chất của tia phân giác.

- Áp dụng tính chất đường trung trực: các điểm các đều hai mút của đoạn thẳng thì nằm trên đường trung trực của đoạn thẳng đó.

- Áp dụng mối quan hệ giữa các cạnh trong tam giác vuông.

Lời giải chi tiết

 a) ∆ABE = ∆HBE

Xét hai tam giác vuông ∆ABE và ∆HBE, ta có:

\(\widehat {{B_1}} = \widehat {{B_2}}\) (do BE là phân giác của góc B)

BE : cạnh huyền chung

Vậy ∆ABE = ∆HBE  (g.c.g)

b) Chứng minh BE là đường trung trực của đoạn thẳng AH.

Vì ∆ABE = ∆HBE

 \( \Rightarrow \) BA = BH, EA = EH

\( \Rightarrow \) E, B cùng thuộc trung trực của AH nên đường thẳng EB là trung trực của AH.

c) EK = EC.

Xét 2 tam giác ∆AEK và ∆HEC , ta có: \(\widehat H = \widehat A = {90^0}\)

EA = EH (chứng minh trên)

\(\widehat {{E_2}} = \widehat {{E_1}}\) (hai góc đối đỉnh)

Vậy ∆AEK = ∆HEC  (g.c.g)

\( \Rightarrow \)  EK = EC (đpcm)

Trong tam giác vuông AEK ta có:

AE < EK (cạnh huyền lớn hơn cạnh góc vuông)

Mà EC = EK.

Suy ra AE < EC (đpcm).

Loigiaihay.com

 

Luyện Bài tập trắc nghiệm môn Toán lớp 7 - Xem ngay

>>Học trực tuyến lớp 7, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan