Bài 6 trang 33 SGK Toán 11 tập 2 - Cánh Diều>
Định luẩ thứ ba của Kepler về quỹ đạo chuyển động cho biết cách ước tính khoảng thời gian P (tính theo năm Trái Đất)
Đề bài
Định luật thứ ba của Kepler về quỹ đạo chuyển động cho biết cách ước tính khoảng thời gian P (tính theo năm Trái Đất) mà một hành tinh cần để hoàn thành một quỹ đạo quay quanh Mặt Trời. Khoảng thời gian đó được xác định bởi hàm số \(P = {d^{\frac{3}{2}}}\), trong đó d là khoảng cách từ hành tinh đó đến Mặt Trời tính theo đơn vị thiên văn AU (1 AU là khoảng cách từ Trái Đất đến Mặt Trời, tức là 1 AU khoảng 93 000 000 dặm). Hỏi Sao Hỏa quay quanh Mặt Trời thì mất bao nhiêu năm Trái Đất (làm tròn đến kết quả hàng phần trăm)? Biết khoảng cách từ Sao Hỏa đến Mặt Trời là 1,52 AU.
Phương pháp giải - Xem chi tiết
Dựa vào công thức được cho trong đề bài để tính
Lời giải chi tiết
Sao Hỏa quay quanh Mặt Trời thì mất số năm Trái Đất là:
\(P = {d^{\frac{3}{2}}} = 1,{52^{\frac{3}{2}}} \approx 1,87\) (AU)
- Bài 5 trang 33 SGK Toán 11 tập 2 - Cánh Diều
- Bài 4 trang 33 SGK Toán 11 tập 2 - Cánh Diều
- Bài 3 trang 33 SGK Toán 11 tập 2 - Cánh Diều
- Bài 2 trang 33 SGK Toán 11 tập 2 - Cánh Diều
- Bài 1 trang 33 SGK Toán 11 tập 2 - Cánh Diều
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết Hình lăng trụ đứng, hình chóp đều, thể tích của một số hình khối - Toán 11 Cánh diều
- Lý thuyết Khoảng cách - Toán 11 Cánh diều
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Cánh diều
- Lý thuyết Góc giữa đường thẳng và mặt phẳng, góc nhị diện - Toán 11 Cánh diều
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Cánh diều
- Lý thuyết Hình lăng trụ đứng, hình chóp đều, thể tích của một số hình khối - Toán 11 Cánh diều
- Lý thuyết Khoảng cách - Toán 11 Cánh diều
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Cánh diều
- Lý thuyết Góc giữa đường thẳng và mặt phẳng, góc nhị diện - Toán 11 Cánh diều
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Cánh diều