Bài 42 trang 73 SGK Toán 7 tập 2

Bình chọn:
4.5 trên 134 phiếu

Giải bài 42 trang 73 SGK Toán 7 tập 2. Chứng minh định lí

Đề bài

Chứng minh định lí : Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là tam giác cân.

Gợi ý : Trong \(∆ABC\), nếu \(AD\) vừa là đường trung tuyến vừa là đường phân giác thì kéo dài \(AD\) một đoạn \(D{A_1}\) sao cho \(D{A_1}= AD.\)

Lời giải chi tiết

Gọi \(AD\) là đường trung tuyến đồng thời là đường phân giác của góc \(A\) trong \(ΔABC.\)  Ta chứng minh  \(∆ABC\) cân tại \(A.\)

Kéo dài \(AD\) một đoạn \(D{A_1}= AD.\)

Xét \(∆ADC\) và \(∆{A_1}DB\) ta có:

+) \(DC = DB\) (do \(AD\) là trung tuyến)

+) \({ \widehat{D}}_1 = {\widehat{D}}_2 \) (\(2\) góc đối đỉnh)

 +) \(AD = D{A_1}\) (do cách vẽ)

Vậy \(∆ADC =  ∆{A_1}DB\) (c.g.c)

\(\Rightarrow AC = {A_1}B\)         (1)

và \(\widehat{DAC}= \widehat{DA_1B}\)

Mà \(\widehat{BAD}= \widehat{DAC}\) (Vì \(AD\) là phân giác)

\(\Rightarrow \) \(\widehat{BAD}=\widehat{DA_1B}\)

Xét tam giác \(AB{A_1}\) có \( \widehat{DA_1B} = \widehat{BAD}\)

Vậy \(AB{A_1}\) cân tại \(B\) 

\(\Rightarrow AB = {A_1}B\)           (2)

Từ (1) và (2) suy ra \(AB = AC\).

Vậy \(∆ABC\) cân tại \(A.\)

Tức là: Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là tam giác cân.

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 7 - Xem ngay

>>Học trực tuyến lớp 7 trên Tuyensinh247.com mọi lúc, mọi nơi với đầy đủ các môn: Toán, Văn, Anh, Lý, Sử cùng các thầy cô giáo dạy giỏi, nổi tiếng.