Bài 38 trang 73 SGK Toán 7 tập 2

Bình chọn:
4.5 trên 308 phiếu

Giải bài 38 trang 73 SGK Toán 7 tập 2. Cho hình bên

Đề bài

Cho hình 38.

 

a)   Tính góc \(KOL\).

b)   Kẻ tia \(IO\), hãy tính góc \(KIO\).

c)   Điểm \(O\) có cách đều ba cạnh của tam giác \(IKL\) không? Tại sao?

Phương pháp giải - Xem chi tiết

Áp dụng tính chất tia phân giác của một góc, định lí về tổng ba góc trong tam giác, tính chất ba đường phân giác của tam giác.

Lời giải chi tiết

a) \(∆KIL\) có \(\widehat{I} + \widehat{IKL}+ \widehat{ILK} =180^o\) 

Mà \(\widehat{I} =62^o\)  nên \(\widehat{IKL}+ \widehat{ILK} = 180^o - 62^o = 118^o \) 

Vì \(KO\) và \(LO\) lần lượt là phân giác  \(\widehat{IKL}\), \(\widehat{ILK}\) 

nên \(\widehat{OKL}+ \widehat{OLK}\)= \(\frac{1}{2}\)(\(\widehat{IKL}+ \widehat{ILK}\))

\(\Rightarrow\) \(\widehat{OKL}+ \widehat{OLK}\) = \(\frac{1}{2}. 180^o\)

\(\Rightarrow\) \(\widehat{OKL}+ \widehat{OLK} = 59^o\) 

∆KOL có \(\widehat{OKL}+ \widehat{OLK} + \widehat{KOL} =180^o \) 

Mà \(\widehat{OKL}+ \widehat{OLK} = 59^o\)  nên \(\widehat{KOL} = 180^o -59^o = 121^o\) 

b) \(ΔKIL\) có \(O\) là giao điểm của hai đường phân giác \(KO\) và \(LO\) nên \(IO\) là đường phân giác của góc KIL (định lí ba đường phân giác cùng đi qua một điểm).

Do đó: \( \widehat{KIO} = \frac{\widehat{KIL}}{2}= \frac{62^0}{2} = 31^o\)

c) Vì \(O\) là giao điểm của ba đường phân giác của tam giác \(IKL\) nên \(O\) cách đều ba cạnh của tam giác \(IKL\).

Loigiaihay.com

 

Luyện Bài tập trắc nghiệm môn Toán lớp 7 - Xem ngay

>>Học trực tuyến lớp 7, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan