Bài 34 trang 87 SGK Toán 6 tập 2


Giải bài 34 trang 87 SGK Toán 6 tập 2. Vẽ hai góc kề bù xOy và yOx'

Đề bài

Vẽ hai góc kề bù \(xOy\) và \(yOx',\) biết \(\widehat{xOy}=100^0\) . Gọi \(Ot\) là tia phân giác của góc \(xOy\) và \(Ot'\) là tia phân giác của góc \(x'Oy.\) Tính số đo các góc \(x'Ot, xOt', tOt'.\) 

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Nếu tia \(Oz\) là tia phân giác của góc \(xOy\) thì  \(\widehat{xOz}=\widehat{yOz}=\dfrac{\widehat{xOy}}2\)

Lời giải chi tiết

Hai góc \(xOy\) và \(x'Oy\) là hai góc kề bù nên \(\widehat{xOy}+\widehat{x'Oy}=180^0\) mà \(\widehat{xOy}=100^0\) nên \(\widehat{x'Oy}=180^0-\widehat{xOy}\)\(=180^0-100^0=80^0\) 

Vì \(Ot\) là tia phân giác của góc \(xOy\) nên \(\displaystyle \widehat {xOt} = \widehat {tOy} = {{\widehat {xOy}} \over 2}\)\( \displaystyle = {{{{100}^0}} \over 2} = {50^0}\)

Vì \(Ot'\) là tia phân giác của góc \(x'Oy\) nên \(\displaystyle \widehat {x'Ot'} = \widehat {t'Oy} \)\(\displaystyle = {{\widehat {x'Oy}} \over 2} = {{{{80}^0}} \over 2} = {40^0}\)

+ Góc \(x'Ot\) và góc \(xOt\) là hai góc kề bù nên \(\widehat {x'Ot} + \widehat {xOt}=180^0\)

Suy ra \(\widehat {x'Ot}=180^0-\widehat {xOt}=180^0-50^0=130^0\)

+ Góc \(xOt'\) và góc \(x'Ot'\) là hai góc kề bù nên \(\widehat {xOt'} + \widehat {x'Ot'}=180^0\)

Suy ra \(\widehat {xOt'}=180^0-\widehat {x'Ot'}=180^0-40^0=140^0\)

+ Vì tia \(Ot'\) nằm giữa hai tia \(Ox'\) và \(Oy,\) tia \(Ot\) nằm giữa hai tia \(Ox\) và \(Oy\)

Lại có hai góc \(xOy\) và \(x'Oy\) là hai góc kề bù nên tia \(Oy\) nằm giữa hai tia \(Ox\) và \(Ox'\)

Suy ra tia \(Oy\) nằm giữa hai tia \(Ot\) và \(Ot'\)

Do đó \(\widehat {yOt'} + \widehat {yOt}=\widehat {t'Ot}\)

Suy ra \(\widehat {t'Ot}=50^0+40^0=90^0\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.6 trên 403 phiếu

Các bài liên quan: - Bài 6. Tia phân giác của góc

Luyện Bài tập trắc nghiệm môn Toán lớp 6 - Xem ngay

>> Học trực tuyến lớp 6 trên Tuyensinh247.com mọi lúc, mọi nơi với đầy đủ các môn: Toán, Văn, Anh, Lý, Sử, Sinh, Địa cùng các thầy cô nổi tiếng, dạy hay dễ hiểu


Gửi bài