Bài 1 trang 38 SGK Đại số 10


Giải bài 1 trang 38 SGK Đại số 10. Tìm tập xác định của hàm số

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Tìm tập xác định của các hàm số sau:

LG a

\(y= \dfrac{3x-2}{2x+1};\)

Phương pháp giải:

Tập xác định của hàm số \(y = f(x)\) là tập hợp tất cả các số thực \(x\) sao cho biểu thức \(f(x)\) có nghĩa.

Một số chú ý:

1) \(\dfrac{A}{B}\) có nghĩa khi \(B \ne 0\)

2) \(\sqrt A \) có nghĩa khi \(A \ge 0\)

3) \(\dfrac{1}{{\sqrt A }}\) có nghĩa khi \(A > 0\)

Lời giải chi tiết:

\(\dfrac{3x-2}{2x+1}\) có nghĩa khi \(2x + 1 ≠ 0\Leftrightarrow x \ne  - {1 \over 2}\).

Vậy tập xác định của hàm số là: \(D=\mathbb R\setminus \left \{ \dfrac{-1}{2} \right \}.\)

LG b

\(y= \dfrac{x-1}{x^{2}+2x-3}\);

Lời giải chi tiết:

Ta có: \({x^2} + 2x - 3 = 0 \Leftrightarrow \left[ \matrix{
x = - 3 \hfill \cr 
x = 1 \hfill \cr} \right.\)

Do đó 

\({x^2} + 2x - 3 \ne 0 \Leftrightarrow \left\{ \begin{array}{l}
x \ne - 3\\
x \ne 1
\end{array} \right.\)

Vậy tập xác định của hàm số là \(D =\mathbb R\backslash \left\{ { - 3;1} \right\}\)

LG c

\(y= \sqrt{2x+1}-\sqrt{3-x}.\)

Lời giải chi tiết:

Điều kiện:

\(\left\{ \begin{array}{l}
2x + 1 \ge 0\\
3 - x \ge 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
2x \ge - 1\\
3 \ge x
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
x \ge - \frac{1}{2}\\
x \le 3
\end{array} \right. \Leftrightarrow - \frac{1}{2} \le x \le 3\)

Vậy TXĐ của hàm số là \(D = \left[ { - \frac{1}{2};3} \right]\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.6 trên 77 phiếu

Các bài liên quan: - Bài 1. Hàm số

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài