Trắc nghiệm Bài 1: Tổng ba góc của một tam giác Toán 7 Cánh diều
Đề bài
Cho hình sau. Tính số đo x:
-
A.
\({90^0}\)
-
B.
\({100^0}\)
-
C.
\({120^0}\)
-
D.
\({130^0}\)
Khẳng định nào sau đây là sai?
-
A.
Tam giác tù là tam giác có 1 góc tù
-
B.
Tam giác nhọn là tam giác có 3 góc đều là góc nhọn
-
C.
Góc lớn nhất trong 1 tam giác là góc tù
-
D.
2 góc nhọn trong tam giác vuông phụ nhau.
Tam giác ABC có \(\widehat B + \widehat C = \widehat A\) và \(\widehat C = 2\widehat B\). Tia phân giác của góc C cắt AB ở D. Tính \(\widehat {ADC}\)
-
A.
60\(^\circ \)
-
B.
90\(^\circ \)
-
C.
120\(^\circ \)
-
D.
30\(^\circ \)
Cho hai đoạn thẳng AB và CD cắt nhau ở E. Các tia phân giác của các góc ACE và DBE cắt nhau ở K. Tính số đo góc BKC?
-
A.
90\(^\circ \)
-
B.
\(\widehat {BDC} - \widehat {BAC}\)
-
C.
\(\frac{{\widehat {BAC} + \widehat {BDC}}}{2}\)
-
D.
\(\widehat {BDC} + \widehat {BAC}\)
-
A.
\({40^0}\)
-
B.
\({50^0}\)
-
C.
\({60^0}\)
-
D.
\({70^0}\)
Tam giác ABC có \(\widehat A = {80^0},\widehat B - \widehat C = {50^0}\). Số đo góc B và góc C lần lượt là:
-
A.
\(\widehat B = {65^0},\widehat C = {15^0}\)
-
B.
\(\widehat B = {75^0},\widehat C = {25^0}\)
-
C.
\(\widehat B = {70^0},\widehat C = {20^0}\)
-
D.
\(\widehat B = {80^0},\widehat C = {30^0}\)
Cho tam giác ABC có \(\widehat A = {50^0},\widehat B = {70^0}\). Tia phân giác của góc C cắt cạnh AB tại M. Số đo góc BMC là:
-
A.
\({50^0}\)
-
B.
\(80^\circ \)
-
C.
\({100^0}\)
-
D.
\({90^0}\)
Cho hình sau. Tính số đo x:
-
A.
\({40^0}\)
-
B.
\({50^0}\)
-
C.
\({60^0}\)
-
D.
\({100^0}\)
Cho tam giác ABC có \(\widehat A = 86^\circ ;\widehat B = 62^\circ \). Số đo góc C là:
-
A.
\({32^0}\)
-
B.
\({35^0}\)
-
C.
\(24^\circ \)
-
D.
\({90^0}\)
-
A.
\(\widehat {BAD} + \widehat {ABD} + \widehat {ADB} = 180^\circ \)
-
B.
\(\widehat {CAD} + \widehat {BAD} + \widehat {BAC} = 180^\circ \)
-
C.
\(\widehat {CAD} + \widehat {ADC} + \widehat {ACB} = 180^\circ \)
-
D.
\(\widehat {BAC} + \widehat {ACD} + \widehat {ABD} = 180^\circ \)
Lời giải và đáp án
Cho hình sau. Tính số đo x:
-
A.
\({90^0}\)
-
B.
\({100^0}\)
-
C.
\({120^0}\)
-
D.
\({130^0}\)
Đáp án : D
Góc ngoài tam giác bằng tổng 2 góc trong không kề với nó.
Ta có góc cần tính là góc ngoài tại đỉnh C của tam giác ABC nên:
\(x = \widehat A + \widehat B = 90^\circ + 40^\circ = 130^\circ \)
Khẳng định nào sau đây là sai?
-
A.
Tam giác tù là tam giác có 1 góc tù
-
B.
Tam giác nhọn là tam giác có 3 góc đều là góc nhọn
-
C.
Góc lớn nhất trong 1 tam giác là góc tù
-
D.
2 góc nhọn trong tam giác vuông phụ nhau.
Đáp án : C
Lý thuyết về 3 loại tam giác: Tam giác tù, tam giác vuông, tam giác nhọn
Các khẳng định A,B,D đúng.
Khẳng định C sai vì: Góc lớn nhất trong tam giác nhọn là một góc nhọn, góc lớn nhất trong tam giác vuông là góc vuông.
Tam giác ABC có \(\widehat B + \widehat C = \widehat A\) và \(\widehat C = 2\widehat B\). Tia phân giác của góc C cắt AB ở D. Tính \(\widehat {ADC}\)
-
A.
60\(^\circ \)
-
B.
90\(^\circ \)
-
C.
120\(^\circ \)
-
D.
30\(^\circ \)
Đáp án : A
Sử dụng tính chất tổng các góc của một tam giác, tính chất tia phân giác của một góc
Xét tam giác ABC có \(\widehat A + \widehat B + \widehat C = {180^0}\) mà \(\widehat B + \widehat C = \widehat A\), do đó \(2\widehat A = {180^0} \Rightarrow \widehat A = {90^0}\).
Trong tam giác ABC do \(\widehat A = {90^0}\) nên \(\widehat B + \widehat C = {90^ \circ }\). Mà \(\widehat C = 2\widehat B\) do đó \(3\widehat B = {90^0} \Rightarrow \widehat B = {30^0}\)nên \(\widehat C = {60^0}\)
Do CD là tia phân giác của góc ACD nên \(\widehat {ACD} = \widehat {DCB} = \widehat C:2 = {60^ \circ }:2 = {30^ \circ }\)
Xét tam giác ADC có: \(\widehat A + \widehat {ADC} + \widehat {ACD} = {180^0} \Rightarrow \widehat {ADC} = {180^0} - \left( {\widehat A + \widehat {ACD}} \right) = {180^0} - \left( {{{30}^0} + {{90}^ \circ }} \right) = {60^ \circ }\)
Cho hai đoạn thẳng AB và CD cắt nhau ở E. Các tia phân giác của các góc ACE và DBE cắt nhau ở K. Tính số đo góc BKC?
-
A.
90\(^\circ \)
-
B.
\(\widehat {BDC} - \widehat {BAC}\)
-
C.
\(\frac{{\widehat {BAC} + \widehat {BDC}}}{2}\)
-
D.
\(\widehat {BDC} + \widehat {BAC}\)
Đáp án : C
Áp dụng tính chất tổng ba góc của một tam giác
Gọi G là giao điểm của CK và AE, H là giao điểm của BK và DE.
Xét tam giác KGB và tam giác AGC và theo tính chất góc ngoài của tam giác ta có:\(\left\{ \begin{array}{l}\widehat K + \widehat {{B_1}} = \widehat {AGK}\\\widehat A + \widehat {{C_1}} = \widehat {AGK}\end{array} \right. \Rightarrow \widehat K + \widehat {{B_1}} = \widehat A + \widehat {{C_1}}\) (1)
Xét tam giác KHC và tam giác DHB và theo tính chất góc ngoài của tam giác ta có:\(\left\{ \begin{array}{l}\widehat K + \widehat {{C_2}} = \widehat {EHB}\\\widehat D + \widehat {{B_2}} = \widehat {EHB}\end{array} \right. \Rightarrow \widehat K + \widehat {{C_2}} = \widehat D + \widehat {{B_2}}\) (2)
Do \(\widehat {{B_1}} = \widehat {{B_2}}\) (BK là tia phân giác của góc DBA);
\(\widehat {{C_1}} = \widehat {{C_2}}\) ( CK là tia phân giác của góc ACD).
Nên cộng (1) với (2) ta được \(2\widehat K = \widehat A + \widehat D\), do đó \(\widehat K = \frac{{\widehat A + \widehat D}}{2}\) hay \(\widehat {BKC} = \frac{{\widehat {BAC} + \widehat {BDC}}}{2}\)
-
A.
\({40^0}\)
-
B.
\({50^0}\)
-
C.
\({60^0}\)
-
D.
\({70^0}\)
Đáp án : C
Áp dụng tính chất tổng ba góc của một tam giác
Áp dụng tính chất tổng ba góc trong tam giác ACF có :\(\widehat A + \widehat {ACF} + \widehat {AFC} = {180^0} \Leftrightarrow {60^0} + \widehat {ACF} + {90^0} = {180^0}\)
\( \Rightarrow \widehat {ACF} = {180^0} - {60^0} - {90^0} = {30^0}.\)
Áp dụng tính chất tổng ba góc trong \(\Delta IEC\) ta có: \(\widehat {IEC} + \widehat {ECI} + \widehat {EIC} = {180^0} \Leftrightarrow {30^0} + x + {90^0} = {180^0}\)
\( \Rightarrow x = {180^0} - {30^0} - {90^0} = {60^0}.\)
Tam giác ABC có \(\widehat A = {80^0},\widehat B - \widehat C = {50^0}\). Số đo góc B và góc C lần lượt là:
-
A.
\(\widehat B = {65^0},\widehat C = {15^0}\)
-
B.
\(\widehat B = {75^0},\widehat C = {25^0}\)
-
C.
\(\widehat B = {70^0},\widehat C = {20^0}\)
-
D.
\(\widehat B = {80^0},\widehat C = {30^0}\)
Đáp án : B
+ Áp dụng tính chất tổng ba góc của một tam giác, tính tổng 2 góc B và C
+ Bài toán trở về tìm 2 số biết tổng và hiệu của chúng
Áp dụng định lí tổng ba góc trong tam giác ABC, ta có:
\(\widehat A + \widehat B + \widehat C = 180^\circ \Rightarrow \widehat B + \widehat C = 180^\circ - 80^\circ = 100^\circ \)
Ta có:
\(\begin{array}{l}\widehat C = (100^\circ - 50^\circ ):2 = 25^\circ ;\\\widehat B = \widehat C + 50^\circ = 25^\circ + 50^\circ = 75^\circ \end{array}\)
Cho tam giác ABC có \(\widehat A = {50^0},\widehat B = {70^0}\). Tia phân giác của góc C cắt cạnh AB tại M. Số đo góc BMC là:
-
A.
\({50^0}\)
-
B.
\(80^\circ \)
-
C.
\({100^0}\)
-
D.
\({90^0}\)
Đáp án : B
Áp dụng tính chất tổng ba góc của một tam giác, tính chất tia phân giác của một góc.
Áp dụng định lí tổng ba góc trong tam giác ABC, ta có:
\(\widehat A + \widehat B + \widehat C = {180^0} \Rightarrow \widehat C = {180^0} - \left( {\widehat A + \widehat B} \right) = {180^0} - \left( {{{50}^0} + {{70}^0}} \right) = {60^0}\).
Do CM là tia phân giác của góc ACB nên \(\widehat {{C_1}} = \widehat {{C_2}} = \frac{{\widehat C}}{2} = \frac{{{{60}^0}}}{2} = {30^0}\).
Áp dụng định lí tổng ba góc trong tam giác BMC có:
\(\widehat B + \widehat {BMC} + {\widehat C_1} = {180^0} \Rightarrow \widehat {BMC} = {180^0} - \left( {\widehat B + \widehat {{C_1}}} \right) = {180^0} - \left( {{{70}^0} + {{30}^0}} \right) = {80^0}\)
Cho hình sau. Tính số đo x:
-
A.
\({40^0}\)
-
B.
\({50^0}\)
-
C.
\({60^0}\)
-
D.
\({100^0}\)
Đáp án : B
Áp dụng tính chất tổng ba góc của một tam giác: Trong \(\Delta ABC:\,\widehat A + \widehat B + \widehat C = {180^0}.\)
Áp dụng tính chất tổng ba góc trong tam giác ABC, ta có:
\(\widehat A + \widehat B + \widehat C = {180^0}\)
Suy ra \(\widehat B + \widehat C = {180^0} - \widehat A = {180^0} - {80^0} = {100^0}\).
Hay \(x + x = {100^0}\) hay \( 2x = {100^0} \) suy ra \( x = {50^0}\)
Cho tam giác ABC có \(\widehat A = 86^\circ ;\widehat B = 62^\circ \). Số đo góc C là:
-
A.
\({32^0}\)
-
B.
\({35^0}\)
-
C.
\(24^\circ \)
-
D.
\({90^0}\)
Đáp án : A
Tổng số đo 3 góc trong 1 tam giác bằng 180 độ
Áp dụng định lí tổng ba góc trong tam giác ABC, ta có:
\(\begin{array}{l}\widehat A + \widehat B + \widehat C = 180^\circ \\ \Rightarrow 86^\circ + 62^\circ + \widehat C = 180^\circ \\ \Rightarrow \widehat C = 180^\circ - 86^\circ - 62^\circ = 32^\circ \end{array}\)
-
A.
\(\widehat {BAD} + \widehat {ABD} + \widehat {ADB} = 180^\circ \)
-
B.
\(\widehat {CAD} + \widehat {BAD} + \widehat {BAC} = 180^\circ \)
-
C.
\(\widehat {CAD} + \widehat {ADC} + \widehat {ACB} = 180^\circ \)
-
D.
\(\widehat {BAC} + \widehat {ACD} + \widehat {ABD} = 180^\circ \)
Đáp án : B
Tổng số đo 3 góc trong 1 tam giác bằng 180 độ
Áp dụng định lí tổng số đo 3 góc trong 3 tam giác ABD, ACD và ABC, ta được:
\(\widehat {BAD} + \widehat {ABD} + \widehat {ADB} = 180^\circ \)
\(\widehat {CAD} + \widehat {ADC} + \widehat {ACB} = 180^\circ \)
\(\widehat {BAC} + \widehat {ACD} + \widehat {ABD} = 180^\circ \)
Vậy A,C,D đúng
Luyện tập và củng cố kiến thức Bài 2: Quan hệ giữa góc và cạnh đối diện. Bất đẳng thức tam giác Toán 7 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 3: Hai tam giác bằng nhau Toán 7 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 4: Trường hợp bằng nhau thứ nhất của tam giác cạnh - cạnh - cạnh Toán 7 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 5: Trường hợp bằng nhau thứ hai của tam giác cạnh - góc - cạnh Toán 7 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 6: Trường hợp bằng nhau thứ ba của tam giác góc - cạnh - góc Toán 7 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 7: Tam giác cân Toán 7 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 8: Đường vuông góc và đường xiên Toán 7 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 9: Đường trung trực của một đoạn thẳng Toán 7 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 10: Tính chất ba đường trung tuyến của tam giác Toán 7 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 11: Tính chất ba đường phân giác của tam giác Toán 7 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 12: Tính chất ba đường trung trực của tam giác Toán 7 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 13: Tính chất ba đường cao của tam giác Toán 7 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
- Trắc nghiệm Bài 13: Tính chất ba đường cao của tam giác Toán 7 Cánh diều
- Trắc nghiệm Bài 12: Tính chất ba đường trung trực của tam giác Toán 7 Cánh diều
- Trắc nghiệm Bài 11: Tính chất ba đường phân giác của tam giác Toán 7 Cánh diều
- Trắc nghiệm Bài 10: Tính chất ba đường trung tuyến của tam giác Toán 7 Cánh diều
- Trắc nghiệm Bài 9: Đường trung trực của một đoạn thẳng Toán 7 Cánh diều