Trắc nghiệm Bài 4: Làm tròn và ước lượng Toán 7 Cánh diều
Đề bài
Làm tròn số 424,267 với độ chính xác 0,05 được:
-
A.
424,2
-
B.
424,27
-
C.
424,3
-
D.
420
Làm tròn số -75,681 đến hàng phần trăm, ta được:
-
A.
-75,6
-
B.
-100
-
C.
-75,7
-
D.
-75,68
Làm tròn số $69,283$ đến chữ số thập phân thứ hai ta được
-
A.
$69,28$
-
B.
$69,29$
-
C.
$69,30$
-
D.
$69,284$
Làm tròn số $0,158$ đến chữ số thập phân thứ nhất ta được
-
A.
\(0,17\)
-
B.
\(0,159\)
-
C.
\(0,16\)
-
D.
\(0,2\)
Số $60,996$ được làm tròn đến hàng đơn vị là
-
A.
\(60\)
-
B.
\(61\)
-
C.
\(60,9\)
-
D.
\(61,9\)
Cho số \(982434\). Làm tròn số này đến hàng nghìn ta được số
-
A.
\(983000\)
-
B.
\(982\)
-
C.
\(982000\)
-
D.
\(98200\)
Cho số \(1,3765\). Làm tròn số này đến hàng phần nghìn ta được số
-
A.
\(1,377\)
-
B.
\(1,376\)
-
C.
\(1,3776\)
-
D.
\(1,38\)
Có \(21292\) người ở lễ hội ẩm thực. Hỏi lễ hội có khoảng bao nhiêu nghìn người?
-
A.
\(22000\) người
-
B.
\(21000\) người
-
C.
\(21900\) người
-
D.
\(21200\) người
Thực hiện phép tính \(\left( {4,375 + 5,2} \right) - \left( {6,452 - 3,55} \right)\) rồi làm tròn kết quả đến chữ số thập phân thứ hai, ta được kết quả là
-
A.
\(6,674\)
-
B.
\(6,68\)
-
C.
\(6,63\)
-
D.
\(6,67\)
Kết quả của phép tính \(7,5432 + 1,37 + 5,163 + 0,16\) sau khi làm tròn đến chữ số thập phân thứ nhất là:
-
A.
\(14,4\)
-
B.
\(14,24\)
-
C.
\(14,3\)
-
D.
\(14,2\)
Ước lượng kết quả của phép tính \(\dfrac{{43,7 + 18,2}}{{7,8 + 3,9}}.\)
-
A.
\(5\)
-
B.
\(\dfrac{{31}}{6}\)
-
C.
\(\dfrac{{61}}{9}\)
-
D.
\(6\)
Kết quả của phép tính \(7,8.5,2 + 21,7.0,8\) sau khi được ước lượng là
-
A.
\(61\)
-
B.
\(62\)
-
C.
\(60\)
-
D.
\(63\)
Lời giải và đáp án
Làm tròn số 424,267 với độ chính xác 0,05 được:
-
A.
424,2
-
B.
424,27
-
C.
424,3
-
D.
420
Đáp án : C
Làm tròn số 424, 267 với độ chính xác là 0,05, tức là làm tròn đến chữ số hàng phần mười.
Ta thấy chữ số ở hàng làm tròn là chữ số 2 ở phần thập phân
Chữ số ngay bên phải hàng làm tròn là 6 > 5 nên ta tăng chữ số hàng làm tròn thêm 1 đơn vị và bỏ đi các chữ số ở sau hàng làm tròn.
Vậy số 424,267 sau khi làm tròn với độ chính xác là 0,05 được 424,3
Làm tròn số -75,681 đến hàng phần trăm, ta được:
-
A.
-75,6
-
B.
-100
-
C.
-75,7
-
D.
-75,68
Đáp án : D
* Muốn làm tròn số thập phân âm, ta làm tròn số đối của nó rồi thêm dấu “ –“ trước kết quả.
* Làm tròn số thập phân dương:
- Đối với chữ số hàng làm tròn:
+ Giữ nguyên nếu chữ số ngay bên phải nhỏ hơn 5;
+Tăng 1 đơn vị nếu chữ số ngay bên phải lớn hơn hoặc bằng 5
- Đối với chữ số sau hàng làm tròn:
+ Bỏ đi nếu ở phần thập phân;
+ Thay bằng các chữ số 0 nếu ở phần số nguyên
Trước tiên, ta làm tròn số 75,681.
Ta thấy chữ số ở hàng làm tròn là chữ số 8 ở phần thập phân.
Chữ số ngay bên phải hàng làm tròn là 1 < 5 nên giữ nguyên chữ số hàng làm tròn và bỏ đi các chữ số ở sau hàng làm tròn.
Vậy làm tròn số 75,681 đến chữ số hàng phần trăm là 75,68 nên số làm tròn -75,681 đến chữ số hàng phần trăm được -75,68.
Làm tròn số $69,283$ đến chữ số thập phân thứ hai ta được
-
A.
$69,28$
-
B.
$69,29$
-
C.
$69,30$
-
D.
$69,284$
Đáp án : A
Sử dụng qui ước làm tròn số
Trường hợp 1: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi nhỏ hơn 5 thì ta giữ nguyên bộ phận còn lại
Trường hợp 2: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi lớn hơn hoặc bằng 5 thì ta cộng thêm 1 vào chữ số cuối cùng của bộ phận còn lại.
Vì số $69,283$ có chữ số thập phân thứ ba là \(3 < 5\) nên làm tròn đến chữ số thập phân thứ hai ta được $69,283 \approx 69,28$
Làm tròn số $0,158$ đến chữ số thập phân thứ nhất ta được
-
A.
\(0,17\)
-
B.
\(0,159\)
-
C.
\(0,16\)
-
D.
\(0,2\)
Đáp án : D
Sử dụng qui ước làm tròn số
Trường hợp 1: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi nhỏ hơn 5 thì ta giữ nguyên bộ phận còn lại
Trường hợp 2: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi lớn hơn hoặc bằng 5 thì ta cộng thêm 1 vào chữ số cuối cùng của bộ phận còn lại.
Vì số $0,158$ có chữ số thập phân thứ hai là \(5 \ge 5\) nên khi làm tròn đến chữ số thập phân thứ nhất ta được $0,158 \approx 0,2$
Số $60,996$ được làm tròn đến hàng đơn vị là
-
A.
\(60\)
-
B.
\(61\)
-
C.
\(60,9\)
-
D.
\(61,9\)
Đáp án : B
Sử dụng qui ước làm tròn số
Trường hợp 1: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi nhỏ hơn 5 thì ta giữ nguyên bộ phận còn lại
Trường hợp 2: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi lớn hơn hoặc bằng 5 thì ta cộng thêm 1 vào chữ số cuối cùng của bộ phận còn lại.
Vì số $60,996$ có chữ số thập phân thứ nhất là \(9 > 5\) nên làm tròn đến hàng đơn vị ta được $60,996 \approx 61$
Cho số \(982434\). Làm tròn số này đến hàng nghìn ta được số
-
A.
\(983000\)
-
B.
\(982\)
-
C.
\(982000\)
-
D.
\(98200\)
Đáp án : C
Sử dụng qui ước làm tròn số
Trường hợp 1: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi nhỏ hơn 5 thì ta giữ nguyên bộ phận còn lại
Trường hợp 2: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi lớn hơn hoặc bằng 5 thì ta cộng thêm 1 vào chữ số cuối cùng của bộ phận còn lại.
Số \(982434\) có chữ số hàng trăm là \(4 < 5\) nên làm tròn số này đến hàng nghìn ta được \(982434 \approx 982000\)
Cho số \(1,3765\). Làm tròn số này đến hàng phần nghìn ta được số
-
A.
\(1,377\)
-
B.
\(1,376\)
-
C.
\(1,3776\)
-
D.
\(1,38\)
Đáp án : A
Sử dụng qui ước làm tròn số
Trường hợp 1: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi nhỏ hơn 5 thì ta giữ nguyên bộ phận còn lại
Trường hợp 2: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi lớn hơn hoặc bằng 5 thì ta cộng thêm 1 vào chữ số cuối cùng của bộ phận còn lại.
Số \(1,3765\) có chữ số hàng phần chục nghìn là $5 \ge 5$ nên làm tròn số này đến hàng phần nghìn ta được \(1,3765 \approx 1,377\)
Có \(21292\) người ở lễ hội ẩm thực. Hỏi lễ hội có khoảng bao nhiêu nghìn người?
-
A.
\(22000\) người
-
B.
\(21000\) người
-
C.
\(21900\) người
-
D.
\(21200\) người
Đáp án : B
Từ đề bài ta làm tròn số $21292$ đến hàng nghìn.
Sử dụng qui ước làm tròn số
Trường hợp 1: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi nhỏ hơn 5 thì ta giữ nguyên bộ phận còn lại
Trường hợp 2: Nếu chữ số đầu tiên trong các chữ số bị bỏ đi lớn hơn hoặc bằng 5 thì ta cộng thêm 1 vào chữ số cuối cùng của bộ phận còn lại.
Từ yêu cầu đề bài ta sẽ làm tròn số \(21292\) đến hàng nghìn.
Vì số \(21292\) có chữ số hàng trăm là \(2 < 5\) nên làm tròn số này đến hàng nghìn ta được \(21292 \approx 21000\)
Vậy lễ hội có khoảng \(21000\) người.
Thực hiện phép tính \(\left( {4,375 + 5,2} \right) - \left( {6,452 - 3,55} \right)\) rồi làm tròn kết quả đến chữ số thập phân thứ hai, ta được kết quả là
-
A.
\(6,674\)
-
B.
\(6,68\)
-
C.
\(6,63\)
-
D.
\(6,67\)
Đáp án : D
Thực hiện phép tính rồi dùng qui ước làm tròn số để làm tròn theo yêu cầu bài toán.
Ta có \(\left( {4,375 + 5,2} \right) - \left( {6,452 - 3,55} \right)\)\( = 9,575 - 2,902 = 6,673\)
Kết quả được làm tròn đến chữ số thập phân thứ hai: \(6,673 \approx 6,67.\)
Kết quả của phép tính \(7,5432 + 1,37 + 5,163 + 0,16\) sau khi làm tròn đến chữ số thập phân thứ nhất là:
-
A.
\(14,4\)
-
B.
\(14,24\)
-
C.
\(14,3\)
-
D.
\(14,2\)
Đáp án : D
Thực hiện phép tính rồi dùng qui ước làm tròn số để làm tròn theo yêu cầu bài toán
Ta có \(7,5432 + 1,37 + 5,163 + 0,16\)\( = 8,9132 + 5,163 + 0,16 = 14,0762 + 0,16 = 14,2362\)
Làm tròn kết quả \(14,2362\) đến chữ số thập phân thứ nhất: \(14,2362 \approx 14,2.\)
Ước lượng kết quả của phép tính \(\dfrac{{43,7 + 18,2}}{{7,8 + 3,9}}.\)
-
A.
\(5\)
-
B.
\(\dfrac{{31}}{6}\)
-
C.
\(\dfrac{{61}}{9}\)
-
D.
\(6\)
Đáp án : A
Để ước lượng kết quả phép tính , ta thường sử dụng qui ước làm tròn số để làm tròn chữ số ở hàng cao nhất của mỗi số trong phép tính.
Ta có \(43,7 \approx 40\); \(18,2 \approx 20\); \(7,8 \approx 8;\,3,9 \approx 4\)
Nên ta có \(\dfrac{{43,7 + 18,2}}{{7,8 + 3,9}} \approx \dfrac{{40 + 20}}{{8 + 4}}\)
Hay \(\dfrac{{43,7 + 18,2}}{{7,8 + 3,9}} \approx 5\)
Kết quả của phép tính \(7,8.5,2 + 21,7.0,8\) sau khi được ước lượng là
-
A.
\(61\)
-
B.
\(62\)
-
C.
\(60\)
-
D.
\(63\)
Đáp án : C
Để ước lượng kết quả phép tính , ta thường sử dụng qui ước làm tròn số để làm tròn chữ số ở hàng cao nhất của mỗi số trong phép tính.
Ta có \(7,8 \approx 8;\,5,2 \approx 5;\,21,7 \approx 20;\,0,8 \approx 1\)
Nên \(7,8.5,2 + 21,7.0,8\)\( \approx 8.5 + 20.1 = 60\)
Luyện tập và củng cố kiến thức Bài 5: Tỉ lệ thức Toán 7 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 6: Dãy tỉ số bằng nhau Toán 7 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 7: Đại lượng tỉ lệ thuận Toán 7 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 8: Đại lượng tỉ lệ nghịch Toán 7 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 3: Giá trị tuyệt đối của một số thực Toán 7 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 2: Tập hợp R các số thực Toán 7 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 1: Số vô tỉ. Căn bậc hai số học Toán 7 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
- Trắc nghiệm Bài 13: Tính chất ba đường cao của tam giác Toán 7 Cánh diều
- Trắc nghiệm Bài 12: Tính chất ba đường trung trực của tam giác Toán 7 Cánh diều
- Trắc nghiệm Bài 11: Tính chất ba đường phân giác của tam giác Toán 7 Cánh diều
- Trắc nghiệm Bài 10: Tính chất ba đường trung tuyến của tam giác Toán 7 Cánh diều
- Trắc nghiệm Bài 9: Đường trung trực của một đoạn thẳng Toán 7 Cánh diều