Lý thuyết tỉ lệ thức


Tỉ lệ thức là một đẳng thức của hai số

1. Định nghĩa

Tỉ lệ thức là một đẳng thức của hai số \(\dfrac{a}{b} = \dfrac{c}{d}\) ( \(a, d\) gọi là ngoại tỉ; \(c,b\) gọi là trung tỉ)

2. Tính chất

a) Tính chất cơ bản: Nếu  \(\dfrac{a}{b} = \dfrac{c}{d}\) thì \(ad = bc\).

b) Điều kiện để bốn số thành lập tỉ lệ thức:

Nếu \(ad = bc\) và \(a, b, c, d\ne 0\) thì ta có các tỉ lệ thức:

 \(\dfrac{a}{b} = \dfrac{c}{d}\) \(; \dfrac{a}{c}= \dfrac{b}{d} ; \dfrac{d}{b} =\dfrac{c}{a} ; \dfrac{d}{c} = \dfrac{b}{a}\)

3. Các dạng toán cơ bản

Dạng 1: Lập tỉ lệ thức từ đẳng thức cho trước

Phương pháp:

Ta sử dụng: Nếu  \(a.d = b.c\) thì

\(\dfrac{a}{b} = \dfrac{c}{d}\); \(\dfrac{a}{c} = \dfrac{b}{d}\); \(\dfrac{d}{b} = \dfrac{c}{a};\) \(\dfrac{d}{c} = \dfrac{b}{a}.\)

Ví dụ: Cho \(3.4 = 2.6\) thì ta có các tỉ lệ thức sau: 

\(\dfrac{2}{4} = \dfrac{3}{6};\dfrac{2}{3} = \dfrac{4}{6};\)\(\dfrac{4}{2} = \dfrac{6}{3};\dfrac{3}{2} = \dfrac{6}{4}\)

Dạng 2: Tìm x, y  

Phương pháp:

Sử dụng tính chất cơ bản của tỉ lệ thức: Nếu \(\dfrac{a}{b} = \dfrac{c}{d}\) thì \(a.d = b.c\)

Ví dụ:  Tìm x biết \(\dfrac{x}{2} = \dfrac{8}{6}\)

Ta có: 

\(\begin{array}{l}
\dfrac{x}{2} = \dfrac{8}{6}\\
\Rightarrow x.6 = 8.2\\
\Rightarrow x = \dfrac{{16}}{6}\\
\Rightarrow x = \dfrac{8}{3}
\end{array}\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.5 trên 93 phiếu

Các bài liên quan: - Bài 7. Tỉ lệ thức

Luyện Bài tập trắc nghiệm môn Toán lớp 7 - Xem ngay

>> Học trực tuyến lớp 7 trên Tuyensinh247.com mọi lúc, mọi nơi với đầy đủ các môn: Toán, Văn, Anh, Lý, Sử, Sinh cùng các thầy cô giáo dạy giỏi, nổi tiếng.


Gửi bài