Lý thuyết tỉ lệ thức


Tỉ lệ thức là một đẳng thức của hai số

I. Các kiến thức cần nhớ

Định nghĩa tỉ lệ thức

+ Tỉ lệ thức là đẳng thức của hai tỉ số \(\dfrac{a}{b} = \dfrac{c}{d}\)

+ Tỉ lệ thức \(\dfrac{a}{b} = \dfrac{c}{d}\) còn được viết là \(a:b = c:d\)

Ví dụ: \(\dfrac{{28}}{{24}} = \dfrac{7}{6};\)\(\dfrac{3}{{10}} = \dfrac{{2,1}}{7}\)

Tính chất tỉ lệ thức

+ Tính chất 1 (tính chất cơ bản của tỉ lệ thức)

Nếu \(\dfrac{a}{b} = \dfrac{c}{d}\) thì \(a.d = b.c\)

+ Tính chất 2 (điều kiện để bốn số lập thành tỉ lệ thức): Nếu \(ad=bc\) và \(a,b,c,d \ne 0\) thì ta có các tỉ lệ thức

\(\dfrac{a}{b} = \dfrac{c}{d}\); \(\dfrac{a}{c} = \dfrac{b}{d}\); \(\dfrac{d}{b} = \dfrac{c}{a};\) \(\dfrac{d}{c} = \dfrac{b}{a}.\)

Ví dụ: Ta có \(\dfrac{3}{6} = \dfrac{9}{{18}} \Rightarrow 3.18 = 9.6\left( { = 54} \right)\)

Vì \(4.9 = 3.12(=36)\) nên ta có các tỉ lệ thức sau: \(\dfrac{4}{3} = \dfrac{{12}}{9};\,\dfrac{3}{4} = \dfrac{9}{{12}};\dfrac{4}{{12}} = \dfrac{3}{9};\dfrac{{12}}{4} = \dfrac{9}{3}\) 

II. Các dạng toán thường gặp

Dạng 1: Lập tỉ lệ thức từ đẳng thức cho trước

Phương pháp:

Ta sử dụng: Nếu  \(a.d = b.c\) thì

\(\dfrac{a}{b} = \dfrac{c}{d}\); \(\dfrac{a}{c} = \dfrac{b}{d}\); \(\dfrac{d}{b} = \dfrac{c}{a};\) \(\dfrac{d}{c} = \dfrac{b}{a}.\)

Dạng 2: Tìm x, y

Phương pháp:

Sử dụng tính chất cơ bản của tỉ lệ thức: Nếu \(\dfrac{a}{b} = \dfrac{c}{d}\) thì \(a.d = b.c\)

Trong một tỉ lệ thức ta có thể tìm một số hạng chưa biết khi biết ba số hạng còn lại.

\(\dfrac{a}{b} = \dfrac{c}{d} \Rightarrow a = \dfrac{{bc}}{d};\,b = \dfrac{{ad}}{c};\)\(c = \dfrac{{ad}}{b};\,d = \dfrac{{bc}}{a}\) .

Ví dụ:  Tìm x biết \(\dfrac{x}{2} = \dfrac{8}{6}\)

Ta có: 

\(\begin{array}{l}
\dfrac{x}{2} = \dfrac{8}{6}\\
\Rightarrow x.6 = 8.2\\
\Rightarrow x = \dfrac{{16}}{6}\\
\Rightarrow x = \dfrac{8}{3}
\end{array}\)

Dạng 3: Chứng minh các tỉ lệ thức

Phương pháp:

Dựa vào các tính chất của tỉ lệ thức và biến đổi linh hoạt để chứng minh.


Bình chọn:
4.6 trên 162 phiếu

>> Xem thêm

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí