Lý thuyết Phương trình bậc hai một ẩn Toán 9 Cùng khám phá>
1. Phương trình bậc hai một ẩn Phương trình dạng \(a{x^2} + bx + c = 0\) với a, b, c là ba số đã cho và \(a \ne 0\), được gọi là phương trình bậc hai một ẩn (ẩn số là x) hay còn nói gọn là phương trình bậc hai.
1. Phương trình bậc hai một ẩn
Phương trình dạng \(a{x^2} + bx + c = 0\) với a, b, c là ba số đã cho và \(a \ne 0\), được gọi là phương trình bậc hai một ẩn (ẩn số là x) hay còn nói gọn là phương trình bậc hai. |
Ví dụ: Phương trình \(2{x^2} - 3x + 1 = 0\) là phương trình bậc hai với \(a = 2;b = - 3;c = 1\).
Phương trình \({x^2} - 3 = 0\) là phương trình bậc hai với \(a = 1,b = 0,c = - 3\).
Phương trình \(0{x^2} - 2x - 3 = 0\) không là phương trình bậc hai vì \(a = 0\).
2. Một số cách giải phương trình bậc hai
Ta có thể giải phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) theo các cách sau: - Đưa về phương trình tích - Biến đổi vế trái của phương trình về dạng \(a{\left( {x + h} \right)^2} = k\) với h, k là các hằng số. |
Ví dụ 1: Giải phương trình \(2{x^2} - 4x = 0\)
Ta có:
\(\begin{array}{l}2{x^2} - 4x = 0\\2x\left( {x - 2} \right) = 0\end{array}\)
\(x = 0\) hoặc \(x - 2 = 0\)
\(x = 0\) hoặc \(x = 2\).
Vậy phương trình có hai nghiệm \({x_1} = 0,{x_2} = 2\).
Ví dụ 2: Giải phương trình \({x^2} - 4x = 1\)
Ta có:
\(\begin{array}{l}{x^2} - 4x = 5\\{x^2} - 4x + 4 = 5 + 4\\{\left( {x - 2} \right)^2} = 9\end{array}\)
\(x - 2 = 3\) hoặc \(x - 2 = - 3\)
suy ra \(x = 5\) hoặc \(x = - 1\).
Vậy phương trình có hai nghiệm \({x_1} = 5,{x_2} = - 1\).
3. Công thức nghiệm của phương trình bậc hai
Công thức nghiệm của phương trình bậc hai:
Cho phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) và \(\Delta = {b^2} - 4ac\). - Nếu \(\Delta > 0\) thì phương trình có hai nghiệm phân biệt: \({x_1} = \frac{{ - b + \sqrt \Delta }}{{2a}};{x_2} = \frac{{ - b - \sqrt \Delta }}{{2a}}\). - Nếu \(\Delta = 0\) thì phương trình có nghiệm kép \({x_1} = {x_2} = - \frac{b}{{2a}}\). - Nếu \(\Delta < 0\) thì phương trình vô nghiệm. |
Ví dụ: Giải phương trình \({x^2} - 7x - 8 = 0\).
Ta có: \(a = 1,b = - 7,c = - 8\).
\(\Delta = {b^2} - 4ac = {\left( { - 7} \right)^2} - 4.1.\left( { - 8} \right) = 81 > 0\).
Vậy phương trình có hai nghiệm phân biệt là
\({x_1} = \frac{{ - \left( { - 7} \right) + \sqrt {81} }}{{2.1}} = 8;{x_2} = \frac{{ - \left( { - 7} \right) - \sqrt {81} }}{{2.1}} = - 1\).
Lưu ý: Nếu phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) có \(ac < 0\) (a và c trái dấu) thì \(\Delta = {b^2} - 4ac > 0\). Khi đó, phương trình có hai nghiệm phân biệt.
Ví dụ: Phương trình \({x^2} + 3572x - 3573 = 0\) có \(a = 1 > 0,c = - 3573 < 0\), suy ra a và c trái dấu.
Do đó phương trình có hai nghiệm phân biệt.
Công thức nghiệm thu gọn của phương trình bậc hai:
Cho phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) có \(b = 2b'\), \(\Delta ' = b{'^2} - ac\). - Nếu \(\Delta ' > 0\) thì phương trình có hai nghiệm phân biệt: \({x_1} = \frac{{ - b' + \sqrt {\Delta '} }}{a};{x_2} = \frac{{ - b' - \sqrt {\Delta '} }}{a}\). - Nếu \(\Delta ' = 0\) thì phương trình có nghiệm kép \({x_1} = {x_2} = - \frac{{b'}}{a}\). - Nếu \(\Delta ' < 0\) thì phương trình vô nghiệm. |
Ví dụ: Giải phương trình \(7{x^2} - 12x + 5 = 0\).
Ta có: \(a = 7,b' = - 6,c = 5\).
\(\Delta ' = b{'^2} - ac = {\left( { - 6} \right)^2} - 7.5 = 1 > 0\).
Vậy phương trình có hai nghiệm phân biệt là
\({x_1} = \frac{{ - \left( { - 6} \right) + 1}}{7} = 1;{x_2} = \frac{{ - \left( { - 6} \right) - 1}}{7} = \frac{5}{7}\).
3. Tìm nghiệm của phương trình bậc hai bằng máy tính cầm tay
Sử dụng máy tính cầm tay, ta có thể dễ dạng tìm nghiệm của các phương trình bậc hai.
Bước 1. Ta sử dụng loại máy tính cầm tay (MTCT) có chức năng này (có phím MODE/MENU).
- Đối với máy Fx-570VN PLUS, ta bấm phím MODE rồi bấm phím 5 rồi bấm phím 3 để chuyển về chế độ giải phương trình bậc hai.
- Đối với máy Fx-580VNX, ta bấm MENU rồi bấm phím 9 để chọn tính năng Equation/Func (Ptrình/HệPtrình).
Bấm phím 2 để chọn Polynomial Degree
Cuối cùng, bấm phím 2 để giải phương trình bậc hai
Bước 2. Ta nhập các hệ số \(a,b,c\) bằng cách bấm
Đối với phương trình bậc hai có nghiệm kép, ta nhận được kết quả hiển thị trên màn hình như sau:
Đối với phương trình bậc hai vô nghiệm, ta nhận được kết quả hiển thị trên màn hình như sau:
- Giải mục 1 trang 7 SGK Toán 9 tập 2 - Cùng khám phá
- Giải mục 2 trang 8, 9 SGK Toán 9 tập 2 - Cùng khám phá
- Giải mục 3 trang 9, 10, 11 SGK Toán 9 tập 2 - Cùng khám phá
- Giải mục 4 trang 13 SGK Toán 9 tập 2 - Cùng khám phá
- Giải bài tập 6.8 trang 14 SGK Toán 9 tập 2 - Cùng khám phá
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết Cách tính xác suất của biến cố trong một số mô hình đơn giản Toán 9 Cùng khám phá
- Lý thuyết Phép thử ngẫu nhiên. Không gian mẫu Toán 9 Cùng khám phá
- Lý thuyết Tần số ghép nhóm, tần số tương đối ghép nhóm Toán 9 Cùng khám phá
- Lý thuyết Tần số tương đối Toán 9 Cùng khám phá
- Lý thuyết Tần số Toán 9 Cùng khám phá
- Lý thuyết Cách tính xác suất của biến cố trong một số mô hình đơn giản Toán 9 Cùng khám phá
- Lý thuyết Phép thử ngẫu nhiên. Không gian mẫu Toán 9 Cùng khám phá
- Lý thuyết Tần số ghép nhóm, tần số tương đối ghép nhóm Toán 9 Cùng khám phá
- Lý thuyết Tần số tương đối Toán 9 Cùng khám phá
- Lý thuyết Tần số Toán 9 Cùng khám phá