Giải bài tập 6.8 trang 14 SGK Toán 9 tập 2 - Cùng khám phá>
Đưa các phương trình sau về dạng \(a{x^2} + bx + c = 0\) và chỉ rõ các hệ số a, b, c: a) \({x^2} - x = 3x + 1\) b) \(3{x^2} - 4x = \sqrt 2 {x^2} - 2\) c) \({\left( {x + 1} \right)^2} = 2(x - 1)\) d) \({x^2} - m = 2(m + 1)x\), m là một hằng số.
Đề bài
Đưa các phương trình sau về dạng \(a{x^2} + bx + c = 0\) và chỉ rõ các hệ số a, b, c:
a) \({x^2} - x = 3x + 1\)
b) \(3{x^2} - 4x = \sqrt 2 {x^2} - 2\)
c) \({\left( {x + 1} \right)^2} = 2(x - 1)\)
d) \({x^2} - m = 2(m + 1)x\), m là một hằng số.
Phương pháp giải - Xem chi tiết
Dựa vào phương trình \(a{x^2} + bx + c = 0\) với a, b,c là ba số đã cho và \(a \ne 0\), được gọi là phương trình bậc hai một ẩn (ẩn số x) hay nói gọn là phương trình bậc hai.
Lời giải chi tiết
a) \({x^2} - x = 3x + 1\)
\({x^2} - 4x - 1 = 0\)
Hệ số a = 1, b = - 4, c = -1.
b) \(3{x^2} - 4x = \sqrt 2 {x^2} - 2\)
\(\left( {3 - \sqrt 2 } \right){x^2} - 4x + 2 = 0\)
Hệ số a = \(3 - \sqrt 2 \), b = - 4, c = 2.
c) \({\left( {x + 1} \right)^2} = 2(x - 1)\)
\(\begin{array}{l}{\left( {x + 1} \right)^2} = 2(x - 1)\\{x^2} + 2x + 1 - 2x + 2 = 0\\{x^2} + 3 = 0\end{array}\)
Hệ số a = 1, b = 0, c = 3.
d) \({x^2} - m = 2(m + 1)x\), m là một hằng số.
\({x^2} - (2m + 2)x - m = 0\)
Hệ số a = 1, b = \(2m + 2\), c = - m.
- Giải bài tập 6.9 trang 14 SGK Toán 9 tập 2 - Cùng khám phá
- Giải bài tập 6.10 trang 14 SGK Toán 9 tập 2 - Cùng khám phá
- Giải bài tập 6.11 trang 14 SGK Toán 9 tập 2 - Cùng khám phá
- Giải bài tập 6.12 trang 14 SGK Toán 9 tập 2 - Cùng khám phá
- Giải bài tập 6.13 trang 14 SGK Toán 9 tập 2 - Cùng khám phá
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết Cách tính xác suất của biến cố trong một số mô hình đơn giản Toán 9 Cùng khám phá
- Lý thuyết Phép thử ngẫu nhiên. Không gian mẫu Toán 9 Cùng khám phá
- Lý thuyết Tần số ghép nhóm, tần số tương đối ghép nhóm Toán 9 Cùng khám phá
- Lý thuyết Tần số tương đối Toán 9 Cùng khám phá
- Lý thuyết Tần số Toán 9 Cùng khám phá
- Lý thuyết Cách tính xác suất của biến cố trong một số mô hình đơn giản Toán 9 Cùng khám phá
- Lý thuyết Phép thử ngẫu nhiên. Không gian mẫu Toán 9 Cùng khám phá
- Lý thuyết Tần số ghép nhóm, tần số tương đối ghép nhóm Toán 9 Cùng khám phá
- Lý thuyết Tần số tương đối Toán 9 Cùng khám phá
- Lý thuyết Tần số Toán 9 Cùng khám phá