Lý thuyết Nguyên hàm Toán 12 Kết nối tri thức


Lý thuyết Nguyên hàm

1. Nguyên hàm của một hàm số

Cho hàm số f(x) xác định trên một khoảng K (hoặc một đoạn, một nửa khoảng). Hàm số F(x) được gọi là một nguyên hàm của hàm số f(x) trên K nếu F’(x)=f(x) với mọi x thuộc K.

Chú ý:

Giả sử hàm số F(x) là một nguyên hàm của f(x) trên K. Khi đó:

a) Với mỗi hằng số C, hàm số F(x) + C cũng là một nguyên hàm của f(x) trên K

b) Nếu hàm số G(x) là một nguyên hàm của f(x) trên K thì tồn tại một hằng số C sao chp G(x) = F(x) + C với mọi x thuộc K

Như vậy, nếu F(x) là một nguyên hàm của f(x) trên K thì mọi nguyên hàm của f(x) trên K đều có dạng F(x) + C (C là hằng số). Ta gọi F(x) + C là họ các nguyên hàm của f(x) trên K, kí hiệu bởi \(\int {f(x)dx} \).

2. Tính chất cơ bản của nguyên hàm

  • \(\int {kf(x)dx = k\int {f(x)dx(k \ne 0)} } \)
  • \(\int {\left[ {f(x) + g(x)} \right]} dx = \int {f(x)dx + \int {g(x)dx} } \)
  • \(\int {\left[ {f(x) - g(x)} \right]} dx = \int {f(x)dx - \int {g(x)dx} } \)

3. Nguyên hàm của một số hàm số thường gặp

a) Nguyên hàm của hàm số lũy thừa

Hàm số lũy thừa \(y = {x^\alpha }(\alpha  \in R)\) có đạo hàm với mọi x > 0 và \(({x^\alpha })' = \alpha {x^{\alpha  - 1}}\)

  • \(\int {{x^\alpha }dx = \frac{{{x^{\alpha  + 1}}}}{{\alpha  + 1}} + C(\alpha  \ne  - 1)} \)
  • \(\int {\frac{1}{x}x = \ln \left| x \right| + C} \)

b) Nguyên hàm của hàm số lượng giác

  • \(\int {\cos xdx = \sin x + C} \)
  • \(\int {\sin xdx =  - \cos x + C} \)
  • \(\int {\frac{1}{{{{\cos }^2}x}}dx = \tan x + C} \)
  • \(\int {\frac{1}{{{{\sin }^2}x}}dx =  - \cot x + C} \)

c) Nguyên hàm của hàm số mũ

  • \(\int {{e^x}dx = {e^x} + C} \)
  • \(\int {{a^x}dx = \frac{{{a^x}}}{{\ln a}} + C(0 < a \ne 1)} \)

 

 


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí