Lý thuyết Nguyên hàm Toán 12 Kết nối tri thức>
Lý thuyết Nguyên hàm
1. Nguyên hàm của một hàm số
Cho hàm số f(x) xác định trên một khoảng K (hoặc một đoạn, một nửa khoảng). Hàm số F(x) được gọi là một nguyên hàm của hàm số f(x) trên K nếu F’(x)=f(x) với mọi x thuộc K. |
Chú ý:
Giả sử hàm số F(x) là một nguyên hàm của f(x) trên K. Khi đó:
a) Với mỗi hằng số C, hàm số F(x) + C cũng là một nguyên hàm của f(x) trên K
b) Nếu hàm số G(x) là một nguyên hàm của f(x) trên K thì tồn tại một hằng số C sao chp G(x) = F(x) + C với mọi x thuộc K
Như vậy, nếu F(x) là một nguyên hàm của f(x) trên K thì mọi nguyên hàm của f(x) trên K đều có dạng F(x) + C (C là hằng số). Ta gọi F(x) + C là họ các nguyên hàm của f(x) trên K, kí hiệu bởi \(\int {f(x)dx} \).
2. Tính chất cơ bản của nguyên hàm
|
3. Nguyên hàm của một số hàm số thường gặp
a) Nguyên hàm của hàm số lũy thừa
Hàm số lũy thừa \(y = {x^\alpha }(\alpha \in R)\) có đạo hàm với mọi x > 0 và \(({x^\alpha })' = \alpha {x^{\alpha - 1}}\)
|
b) Nguyên hàm của hàm số lượng giác
|
c) Nguyên hàm của hàm số mũ
|
- Giải mục 1 trang 4,5,6 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải mục 2 trang 6,7,8 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải mục 3 trang 8,9,10 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 4.1 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 4.2 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức