Giải bài tập 4.4 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức>
Tìm: a) (int {left( {2cos x - frac{3}{{{{sin }^2}x}}} right)} dx); b) (int {4{{sin }^2}frac{x}{2}} dx); c) (int {{{left( {sin frac{x}{2} - cos frac{x}{2}} right)}^2}} dx); d) (int {left( {x + {{tan }^2}x} right)} dx).
Đề bài
Tìm:
a) \(\int {\left( {2\cos x - \frac{3}{{{{\sin }^2}x}}} \right)} dx\);
b) \(\int {4{{\sin }^2}\frac{x}{2}} dx\);
c) \(\int {{{\left( {\sin \frac{x}{2} - \cos \frac{x}{2}} \right)}^2}} dx\);
d) \(\int {\left( {x + {{\tan }^2}x} \right)} dx\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về tính chất cơ bản của nguyên hàm để tính: \(\int {kf\left( x \right)dx} = k\int {f\left( x \right)dx} \)
Sử dụng kiến thức về nguyên hàm một tổng để tính: \(\int {\left[ {f\left( x \right) - g\left( x \right)} \right]} \,dx = \int {f\left( x \right)dx - \int {g\left( x \right)dx} } \), \(\int {\left[ {f\left( x \right) + g\left( x \right)} \right]} \,dx = \int {f\left( x \right)dx + \int {g\left( x \right)dx} } \)
Sử dụng kiến thức về nguyên hàm của hàm số lượng giác để tính:
\(\int {\cos x} dx = \sin x + C,\int {\sin x} dx = - \cos x + C,\int {\frac{1}{{{{\cos }^2}x}}} dx = \tan x + C,\int {\frac{1}{{{{\sin }^2}x}}} dx = - \cot x + C\)
Lời giải chi tiết
a) \(\int {\left( {2\cos x - \frac{3}{{{{\sin }^2}x}}} \right)} dx = 2\int {\cos x} dx - 3\int {\frac{1}{{{{\sin }^2}x}}} dx = 2\sin x + 3\cot x + C\)
b) Từ công thức nhân đôi \(\cos 2x = 1 - 2{\sin ^2}x\), áp dụng vào bài ta có:
\(\cos x = 1 - 2{\sin ^2}\frac{x}{2} \Leftrightarrow 2{\sin ^2}\frac{x}{2} = 1 - \cos x \Leftrightarrow 4{\sin ^2}\frac{x}{2} = 2(1 - \cos x)\)
Từ đó suy ra:
\(\int {4{{\sin }^2}\frac{x}{2}} dx = \int {2\left( {1 - \cos x} \right)} dx = 2\int {dx - 2\int {\cos x} dx = 2x - 2\sin x + C} \)
c) \(\int {{{\left( {\sin \frac{x}{2} - \cos \frac{x}{2}} \right)}^2}} dx = \int {\left( {{{\sin }^2}\frac{x}{2} + {{\cos }^2}\frac{x}{2} - 2\sin \frac{x}{2}.\cos \frac{x}{2}} \right)} dx = \int {\left( {1 - \sin x} \right)} dx\)
\( = \int {dx} - \int {\sin x} dx = x + \cos x + C\)
d) \(\int {\left( {x + {{\tan }^2}x} \right)} dx = \int {xdx} + \int {\left( {\frac{1}{{{{\cos }^2}x}} - 1} \right)dx} = \frac{{{x^2}}}{2} + \tan x - x + C\)
- Giải bài tập 4.5 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 4.6 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 4.7 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 4.3 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 4.2 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức