

Giải bài tập 4.1 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức>
Trong mỗi trường hợp sau, hàm số F(x) có là một nguyên hàm của hàm số f(x) trên khoảng tương ứng không? Vì sao? a) \(F\left( x \right) = x\ln x\) và \(f\left( x \right) = 1 + \ln x\) trên khoảng \(\left( {0; + \infty } \right)\); b) \(F\left( x \right) = {e^{\sin x}}\) và \(f\left( x \right) = {e^{\cos x}}\) trên \(\mathbb{R}\).
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Đề bài
Trong mỗi trường hợp sau, hàm số F(x) có là một nguyên hàm của hàm số f(x) trên khoảng tương ứng không? Vì sao?
a) \(F\left( x \right) = x\ln x\) và \(f\left( x \right) = 1 + \ln x\) trên khoảng \(\left( {0; + \infty } \right)\);
b) \(F\left( x \right) = {e^{\sin x}}\) và \(f\left( x \right) = {e^{\cos x}}\) trên \(\mathbb{R}\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về khái niệm nguyên hàm của một hàm số để giải: Cho hàm số f(x) xác định trên một khoảng K (hoặc một đoạn, hoặc một nửa khoảng). Hàm số F(x) được gọi là một nguyên hàm của hàm số f(x) trên K nếu \(F'\left( x \right) = f\left( x \right)\) với mọi x thuộc K.
Lời giải chi tiết
a) Ta có: \(F'\left( x \right) = \left( {x\ln x} \right)' = \ln x + \frac{x}{x} = \ln x + 1\). Do đó, \(F'\left( x \right) = f\left( x \right)\) với mọi x thuộc \(\left( {0; + \infty } \right)\). Do đó, F(x) là một nguyên hàm của hàm số f(x) trên khoảng \(\left( {0; + \infty } \right)\).
b) Ta có: \(F'\left( x \right) = \left( {{e^{\sin x}}} \right)' = \cos x.{e^{\sin x}}\).
Hàm số F(x) không là một nguyên hàm của hàm số f(x) trên \(\mathbb{R}\) vì \(F'\left( {\frac{\pi }{2}} \right) = 0 \ne 1 = f\left( 1 \right)\)


- Giải bài tập 4.2 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 4.3 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 4.4 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 4.5 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 4.6 trang 11 SGK Toán 12 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Giải câu hỏi mở đầu trang 54 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 41 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 29 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 12 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 4 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 54 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 41 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 29 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 12 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 4 SGK Toán 12 tập 2 - Kết nối tri thức