

Giải câu hỏi mở đầu trang 29 SGK Toán 12 tập 2 - Kết nối tri thức>
Một vật thể chuyển động trong không gian Oxyz. Tại mỗi thời điểm t, vật thể ở vị trí M(cost – sint; cost + sint; cost). Hỏi vật thể có chuyển động trong một mặt phẳng cố định hay không?
Tổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Hoá - Sinh - Sử - Địa
Đề bài
Một vật thể chuyển động trong không gian Oxyz. Tại mỗi thời điểm t, vật thể ở vị trí M(cost – sint; cost + sint; cost). Hỏi vật thể có chuyển động trong một mặt phẳng cố định hay không?
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về lập phương trình mặt phẳng đi qua ba điểm không thẳng hàng để viết: Trong không gian Oxyz, bài toán viết phương trình mặt phẳng đi ba điểm không thẳng hàng A, B, C có thể thực hiện theo các bước sau:
+ Tìm cặp vectơ chỉ phương \(\overrightarrow {AB} ,\overrightarrow {AC} \)
+ Tìm vectơ pháp tuyến \(\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]\).
+ Lập phương trình tổng quát của mặt phẳng đi qua A và biết vectơ pháp tuyến là \(\overrightarrow n \).
Lời giải chi tiết
Với \(t = 0\) ta có: \({M_1}\left( {1;1;1} \right)\).
Với \(t = \frac{\pi }{2}\) ta có: \({M_2}\left( { - 1;1;0} \right)\).
Với \(t = \pi \) ta có: \({M_3}\left( { - 1; - 1; - 1} \right)\).
Hai vectơ \(\overrightarrow {{M_1}{M_2}} \left( { - 2;0; - 1} \right),\overrightarrow {{M_1}{M_3}} \left( { - 2; - 2; - 2} \right)\) không cùng phương nên ba điểm \({M_1},{M_2},{M_3}\) không thẳng hàng.
Mặt phẳng \(\left( {{M_1}{M_2}{M_3}} \right)\) có cặp vectơ chỉ phương \(\overrightarrow {{M_1}{M_2}} \left( { - 2;0; - 1} \right),\overrightarrow {{M_1}{M_3}} \left( { - 2; - 2; - 2} \right)\) nên có vectơ pháp tuyến \(\overrightarrow n = \left[ {\overrightarrow {{M_1}{M_2}} ,\overrightarrow {{M_1}{M_3}} } \right]\).
Ta có: \(\vec n= \left[ {\overrightarrow {{M_1}{M_2}} ,\overrightarrow {{M_1}{M_3}} } \right]\)
\( = \left( {\left| {\begin{array}{*{20}{c}}0&{ - 1}\\{ - 2}&{ - 2}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 1}&{ - 2}\\{ - 2}&{ - 2}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 2}&0\\{ - 2}&{ - 2}\end{array}} \right|} \right) = \left( { - 2; - 2;4} \right)\).
Mặt phẳng \(\left( {{M_1}{M_2}{M_3}} \right)\) có vectơ pháp tuyến \(\overrightarrow n \left( { - 2; - 2;4} \right)\) và đi qua điểm \({M_2}\left( { - 1;1;0} \right)\) nên phương trình mặt phẳng \(\left( {{M_1}{M_2}{M_3}} \right)\) là:
\( - 2\left( {x + 1} \right) - 2\left( {y - 1} \right) + 4z = 0\)
\(\Leftrightarrow x + 1 + y - 1 - 2z = 0 \Leftrightarrow x + y - 2z = 0\) (1)
Với \(M\left( {\cos t - \sin t,\cos t + \sin t,\cos t} \right)\) thay vào (1) ta có:
$\cos t-\sin t+\cos t+\sin t-2\cos t=0\Leftrightarrow 0=0\left( L D\right)$.
Vậy \(M\left( {\cos t - \sin t,\cos t + \sin t,\cos t} \right)\) thuộc mặt phẳng \(\left( {{M_1}{M_2}{M_3}} \right)\). Do đó, vật thể M luôn chuyển động trong một mặt phẳng cố định.


- Giải mục 1 trang 29,30,31 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải mục 3 trang 33,34,35 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải mục 2 trang 32,33 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải mục 4 trang 35,36 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải mục 5 trang 37,38 SGK Toán 12 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Giải câu hỏi mở đầu trang 54 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 41 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 29 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 12 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 4 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 54 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 41 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 29 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 12 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải câu hỏi mở đầu trang 4 SGK Toán 12 tập 2 - Kết nối tri thức