Lý thuyết Hình cầu Toán 9 Cùng khám phá>
1. Hình cầu Khi cắt hình cầu bởi một mặt phẳng, ta được một hình tròn. Khi cắt mặt cầu bởi một hình phẳng, ta được một hình tròn. Nếu mặt phẳng đi qua tâm của mặt cầu thì đường tròn đó có bán kính R và được gọi là đường tròn lớn. Nếu mặt phẳng không đi qua tâm của mặt cầu thì đường tròn đó có bán kính bé hơn R.
1. Hình cầu
Khi cắt hình cầu bởi một mặt phẳng, ta được một hình tròn. Khi cắt mặt cầu bởi một hình phẳng, ta được một hình tròn. Nếu mặt phẳng đi qua tâm của mặt cầu thì đường tròn đó có bán kính R và được gọi là đường tròn lớn. Nếu mặt phẳng không đi qua tâm của mặt cầu thì đường tròn đó có bán kính bé hơn R. |
Ví dụ: Khi cắt hình cầu bởi các mặt phẳng khác nhau, ta được các hình tròn có bán kính khác nhau.
2. Diện tích của mặt cầu
Diện tích S của mặt cầu là: \(S = 4\pi {R^2} = \pi {d^2}\) Với R là bán kính và d là đường kính của mặt cầu. |
Ví dụ:
Diện tích mặt cầu là:
\(S = 4\pi {R^2} = 4\pi {.10^2} = 400\pi \left( {c{m^2}} \right)\),
3. Thể tích hình cầu
Thể tích của hình cầu có bán kính R là \(V = \frac{4}{3}\pi {R^3}\). |
Ví dụ:
Thể tích hình cầu là:
\(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {.10^3} = \frac{{4000\pi }}{3}\left( {c{m^3}} \right)\).
- Giải mục 1 trang 77, 78, 79 SGK Toán 9 tập 2 - Cùng khám phá
- Giải mục 2 trang 79, 80 SGK Toán 9 tập 2 - Cùng khám phá
- Giải mục 3 trang 81, 82 SGK Toán 9 tập 2 - Cùng khám phá
- Giải mục 4 trang 82 SGK Toán 9 tập 2 - Cùng khám phá
- Giải bài tập 9.10 trang 83 SGK Toán 9 tập 2 - Cùng khám phá
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết Cách tính xác suất của biến cố trong một số mô hình đơn giản Toán 9 Cùng khám phá
- Lý thuyết Phép thử ngẫu nhiên. Không gian mẫu Toán 9 Cùng khám phá
- Lý thuyết Tần số ghép nhóm, tần số tương đối ghép nhóm Toán 9 Cùng khám phá
- Lý thuyết Tần số tương đối Toán 9 Cùng khám phá
- Lý thuyết Tần số Toán 9 Cùng khám phá
- Lý thuyết Cách tính xác suất của biến cố trong một số mô hình đơn giản Toán 9 Cùng khám phá
- Lý thuyết Phép thử ngẫu nhiên. Không gian mẫu Toán 9 Cùng khám phá
- Lý thuyết Tần số ghép nhóm, tần số tương đối ghép nhóm Toán 9 Cùng khám phá
- Lý thuyết Tần số tương đối Toán 9 Cùng khám phá
- Lý thuyết Tần số Toán 9 Cùng khám phá