

Lý thuyết Giá trị lớn nhất, giá trị nhỏ nhất của hàm số Toán 12 Chân trời sáng tạo>
1. Định nghĩa Khái niệm GTLN, GTNN của hàm số
1. Định nghĩa
Khái niệm GTLN, GTNN của hàm số
Cho hàm số y = f(x) xác định trên tập D. - Số M là giá trị lớn nhất của hàm số y = f(x) trên tập D nếu f(x) \( \le \) M với mọi \(x \in D\) và tồn tại \({x_0} \in D\) sao cho \(f({x_0})\) = M. Kí hiệu M = \(\mathop {\max }\limits_{x \in D} f(x)\) hoặc M = \(\mathop {\max }\limits_D f(x)\). - Số m là giá trị nhỏ nhất của hàm số y = f(x) trên tập D nếu f(x) \( \ge \) m với mọi \(x \in D\) và tồn tại \({x_0} \in D\) sao cho \(f({x_0})\) = m. Kí hiệu m = \(\mathop {\min }\limits_{x \in D} f(x)\) hoặc m = \(\mathop {\min }\limits_D f(x)\). |
2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên một đoạn
Các bước tìm GTLN và GTNN của hàm số f(x) trên đoạn \(\left[ {a;b} \right]\): 1. Tìm các điểm \({x_1},{x_2},...,{x_n} \in (a;b)\), tại đó f’(x) = 0 hoặc không tồn tại. 2. Tính \(f({x_1}),f({x_2}),...,f({x_n}),f(a)\) và \(f(b)\) 3. Tìm số lớn nhất M và số nhỏ nhất m trong các số trên. Ta có: M = \(\mathop {\max }\limits_{\left[ {a;b} \right]} f(x)\); m = \(\mathop {\min }\limits_{\left[ {a;b} \right]} f(x)\) |
Ví dụ: Tìm GTLN và GTNN của hàm số \(y = {x^4} - 4{x^2} + 3\) trên đoạn \(\left[ {0;4} \right]\).
Ta có: \(y' = 4{x^3} - 8x = 4x({x^2} - 2)\); \(y' = 0 \Leftrightarrow x = 0\) hoặc \(x = \sqrt 2 \) (vì \(x \in \left[ {0;4} \right]\)).
\(y(0) = 3\); \(y(4) = 195\); \(y(\sqrt 2 ) = -1\).
Do đó: \(\mathop {\max }\limits_{\left[ {0;4} \right]} y = y(4) = 195\); \(\mathop {\min }\limits_{\left[ {0;4} \right]} y = y(\sqrt 2 ) = - 1\).


- Giải câu hỏi mở đầu trang 14 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải mục 1 trang 14, 15, 16 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải mục 2 trang 16, 17, 18 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 1 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 2 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải câu hỏi mở đầu trang 75 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 69 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 61 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 43 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 32 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 75 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 69 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 61 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 43 SGK Toán 12 tập 2 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 32 SGK Toán 12 tập 2 - Chân trời sáng tạo