Giải bài tập 2 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo >
Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: a) (y = {x^3} - 12x + 1) trên đoạn [-1;3] b) (y = - {x^3} + 24{x^2} - 180x + 400) trên đoạn [3;11] c) (y = frac{{2x + 1}}{{x - 2}}) trên đoạn [3;7] d) (y = sin 2x) trên đoạn ([0;frac{{7pi }}{{12}}])
Đề bài
Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau:
a) \(y = {x^3} - 12x + 1\) trên đoạn [-1;3]
b) \(y = - {x^3} + 24{x^2} - 180x + 400\) trên đoạn [3;11]
c) \(y = \frac{{2x + 1}}{{x - 2}}\) trên đoạn [3;7]
d) \(y = \sin 2x\) trên đoạn \([0;\frac{{7\pi }}{{12}}]\)
Phương pháp giải - Xem chi tiết
Tìm đạo hàm, lập bảng biến thiên và xác định giá trị lớn nhất, giá trị nhỏ nhất của hàm số
Lời giải chi tiết
a) Xét \(y = {x^3} - 12x + 1\) trên đoạn [-1;3]
\(y' = 3{x^2} - 12 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = - 2(loai)\end{array} \right.\)
Bảng biến thiên:
Từ bảng biến thiên, ta thấy \(\mathop {\max }\limits_{[ - 1;3]} y = y( - 1) = 12\) và \(\mathop {\min }\limits_{[ - 1;3]} y = y(2) = - 15\)
b) Xét \(y = - {x^3} + 24{x^2} - 180x + 400\) trên đoạn [3;11]
\(y' = - 3{x^2} + 48x - 180 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 10\\x = 6\end{array} \right.\)
Bảng biến thiên:
Từ bảng biến thiên, ta thấy \(\mathop {\max }\limits_{[3;11]} y = y(3) = 49\) và \(\mathop {\min }\limits_{[3;11]} y = y(6) = - 32\)
c) Xét \(y = \frac{{2x + 1}}{{x - 2}}\) trên đoạn [3;7]
\(y' = \frac{{ - 5}}{{{{(x - 2)}^2}}} < 0\forall x \in [3;7]\)
Bảng biến thiên:
Từ bảng biến thiên, ta thấy \(\mathop {\max }\limits_{[3;7]} y = y(3) = 7\) và \(\mathop {\min }\limits_{[3;7]} y = y(7) = 3\)
d) Xét \(y = \sin 2x\) trên đoạn \([0;\frac{{7\pi }}{{12}}]\)
\(y' = 2\cos 2x = 0 \Leftrightarrow 2x = \frac{\pi }{2} + k\pi \Leftrightarrow x = \frac{\pi }{4} + \frac{{k\pi }}{2}(k \in \mathbb{Z})\)
Ta có: \(x \in [0;\frac{{7\pi }}{{12}}] \Rightarrow k = 0 \Rightarrow x = \frac{\pi }{4}\)
Bảng biến thiên:
Từ bảng biến thiên, ta thấy \(\mathop {\max }\limits_{[0;\frac{{7\pi }}{{12}}]} y = y(\frac{\pi }{4}) = 1\) và \(\mathop {\min }\limits_{[0;\frac{{7\pi }}{{12}}]} y = y(\frac{{7\pi }}{{12}}) = - \frac{1}{2}\)
- Giải bài tập 3 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 4 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 5 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 6 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 7 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Chân trời sáng tạo
- Lý thuyết Xác suất có điều kiện Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình đường thẳng trong không gian Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Chân trời sáng tạo
- Lý thuyết Xác suất có điều kiện Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình đường thẳng trong không gian Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo