TUYENSINH247 ĐỒNG GIÁ 299K TOÀN BỘ KHOÁ HỌC TỪ LỚP 1-LỚP 12

TẶNG KHOÁ ĐỀ THI HK2 TỚI 599K

  • Bắt đầu sau
  • 4

    Giờ

  • 25

    Phút

  • 2

    Giây

Xem chi tiết

Giải bài tập 2 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo


Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: a) (y = {x^3} - 12x + 1) trên đoạn [-1;3] b) (y = - {x^3} + 24{x^2} - 180x + 400) trên đoạn [3;11] c) (y = frac{{2x + 1}}{{x - 2}}) trên đoạn [3;7] d) (y = sin 2x) trên đoạn ([0;frac{{7pi }}{{12}}])

Đề bài

Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau:
a) y=x312x+1 trên đoạn [-1;3]
b) y=x3+24x2180x+400 trên đoạn [3;11]
c) y=2x+1x2 trên đoạn [3;7]
d) y=sin2x trên đoạn [0;7π12]

Phương pháp giải - Xem chi tiết

Tìm đạo hàm, lập bảng biến thiên và xác định giá trị lớn nhất, giá trị nhỏ nhất của hàm số

Lời giải chi tiết

a) Xét y=x312x+1 trên đoạn [-1;3]

y=3x212=0[x=2x=2(loai)

Bảng biến thiên:

Từ bảng biến thiên, ta thấy max[1;3]y=y(1)=12min[1;3]y=y(2)=15

b) Xét y=x3+24x2180x+400 trên đoạn [3;11]

y=3x2+48x180=0[x=10x=6

Bảng biến thiên:

Từ bảng biến thiên, ta thấy max[3;11]y=y(3)=49min[3;11]y=y(6)=32

c) Xét y=2x+1x2 trên đoạn [3;7]

y=5(x2)2<0x[3;7]

Bảng biến thiên:

Từ bảng biến thiên, ta thấy max[3;7]y=y(3)=7min[3;7]y=y(7)=3

d) Xét y=sin2x trên đoạn [0;7π12]

y=2cos2x=02x=π2+kπx=π4+kπ2(kZ)

Ta có: x[0;7π12]k=0x=π4

Bảng biến thiên:

Từ bảng biến thiên, ta thấy max[0;7π12]y=y(π4)=1min[0;7π12]y=y(7π12)=12


Bình chọn:
3.7 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD - Click xem ngay) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.