Giải bài tập 7 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo >
Hộp sữa \(1l\) được thiết kế dạng hình hộp chữ nhật với đáy là hình vuông cạnh x cm. Tìm x để diện tích toàn phần của hộp nhỏ nhất.
Đề bài
Hộp sữa \(1l\) được thiết kế dạng hình hộp chữ nhật với đáy là hình vuông cạnh x cm. Tìm x để diện tích toàn phần của hộp nhỏ nhất.
Phương pháp giải - Xem chi tiết
Tìm mối liên hệ giữa chiều cao và cạnh đáy, từ đó lập hàm số biểu diễn diện tích toàn phần của hộp theo x. Sau đó tìm đạo hàm, lập bảng biến thiên và xác định giá trị nhỏ nhất
Lời giải chi tiết
Gọi chiều cao của hộp là h (cm)
Thể tích của hộp là: \(V = h.{x^2} = 1 \Leftrightarrow h = \frac{1}{{{x^2}}}\)
Diện tích toàn phần của hộp là: \(y = {S_{tp}} = {S_{xq}} + {S_{day}} = 4hx + 2{x^2} = 4.\frac{1}{{{x^2}}}.x + 2{x^2} = 2{x^2} + \frac{4}{x}\)
Tập xác định: \(D = (0; + \infty )\)
\(y' = 4x - \frac{4}{{{x^2}}} = 0 \Leftrightarrow x = 1\)
Bảng biến thiên:
Từ bảng biến thiên, ta thấy \(\mathop {\min }\limits_D y = y(1) = 6\)
Vậy x = 1cm thì diện tích toàn phần của hộp nhỏ nhất và bằng 6 \(c{m^2}\)
- Giải bài tập 6 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 5 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 4 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 3 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo
- Giải bài tập 2 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Chân trời sáng tạo
- Lý thuyết Xác suất có điều kiện Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình đường thẳng trong không gian Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Chân trời sáng tạo
- Lý thuyết Xác suất có điều kiện Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt cầu Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình đường thẳng trong không gian Toán 12 Chân trời sáng tạo
- Lý thuyết Phương trình mặt phẳng Toán 12 Chân trời sáng tạo