Giải mục 3 trang 49, 50 SGK Toán 9 tập 1 - Chân trời sáng tạo


Thực hiện các phép tính có trên bảng trong Hình 2. b) Từ đó, có nhận xét gì về căn bậc hai của thương hai số dương?

Lựa chọn câu để xem lời giải nhanh hơn

HĐ4

Video hướng dẫn giải

Trả lời câu hỏi Hoạt động 4 trang 49 SGK Toán 9 Chân trời sáng tạo

a) Thực hiện các phép tính có trên bảng trong Hình 2.

b) Từ đó, có nhận xét gì về căn bậc hai của thương hai số dương?

Phương pháp giải:

Dựa vào \({\left( {\sqrt a } \right)^2} = {\left( { - \sqrt a } \right)^2} = a\)\(\sqrt {{a^2}}  = a\). ( a > 0)

Lời giải chi tiết:

a)

(1) \(\sqrt {\frac{4}{9}}  = \sqrt {{{\left( {\frac{2}{3}} \right)}^2}}  = \frac{2}{3}\)

(2) \(\frac{{\sqrt 4 }}{{\sqrt 9 }} = \frac{{\sqrt {{2^2}} }}{{\sqrt {{3^2}} }} = \frac{2}{3}\)

(3) \(\sqrt {\frac{{16}}{{25}}}  = \sqrt {{{\left( {\frac{4}{5}} \right)}^2}}  = \frac{4}{5}\)

(4) \(\frac{{\sqrt {16} }}{{\sqrt {25} }} = \frac{{\sqrt {{4^2}} }}{{\sqrt {{5^2}} }} = \frac{4}{5}\)

b) Căn bậc hai của thương hai số dương bằng thương của căn bậc hai hai số dương.

TH6

Video hướng dẫn giải

Trả lời câu hỏi Thực hành 6 trang 50 SGK Toán 9 Chân trời sáng tạo

Tính

a) \(\sqrt {\frac{9}{{25}}} \)

b) \(\sqrt {1\frac{9}{{16}}} \)

c) \(\sqrt {150} :\sqrt 6 \)

d) \(\sqrt {\frac{3}{5}} :\sqrt {\frac{5}{{12}}} \)

Phương pháp giải:

Dựa vào tính chất: Với số thực a không âm và số thực b dương, ta có:

\(\sqrt {\frac{a}{b}}  = \frac{{\sqrt a }}{{\sqrt b }}\)

Lời giải chi tiết:

a) \(\sqrt {\frac{9}{{25}}}  = \frac{{\sqrt 9 }}{{\sqrt {25} }} = \frac{3}{5}\)

b) \(\sqrt {1\frac{9}{{16}}}  = \sqrt {\frac{{25}}{{16}}}  = \frac{{\sqrt {25} }}{{\sqrt {16} }} = \frac{5}{4}\)

c) \(\sqrt {150} :\sqrt 6  = \sqrt {\frac{{150}}{6}}  = \sqrt {25}  = 5\)

d) \(\sqrt {\frac{3}{5}} :\sqrt {\frac{5}{{12}}}  = \sqrt {\frac{3}{5}:\frac{5}{{12}}}  = \sqrt {\frac{3}{5}.\frac{{12}}{5}}  = \sqrt {\frac{{36}}{{25}}}  = \frac{{\sqrt {36} }}{{\sqrt {25} }} = \frac{6}{5}\)

TH7

Video hướng dẫn giải

Trả lời câu hỏi Thực hành 7 trang 50 SGK Toán 9 Chân trời sáng tạo

Rút gọn các biểu thức sau:

a) \(\frac{{\sqrt {555} }}{{\sqrt {111} }}\)

b) \(\sqrt {\frac{{{a^2}}}{{4{b^4}}}} \) với \(a \ge 0;b \ne 0\)

c) \(\frac{{\sqrt {2{a^2}{{(1 - a)}^2}} }}{{\sqrt {50} }}\) với a > 1

Phương pháp giải:

Dựa vào tính chất: Với số thực a không âm và số thực b dương, ta có:

\(\sqrt {\frac{a}{b}}  = \frac{{\sqrt a }}{{\sqrt b }}\)

Lời giải chi tiết:

a) \(\frac{{\sqrt {555} }}{{\sqrt {111} }} = \sqrt {\frac{{555}}{{111}}}  = \sqrt 5 \)

b) \(\sqrt {\frac{{{a^2}}}{{4{b^4}}}}  = \frac{{\sqrt {{a^2}} }}{{\sqrt {4{b^4}} }} = \frac{a}{{2{b^2}}}\)

c) \(\frac{{\sqrt {2{a^2}{{(1 - a)}^2}} }}{{\sqrt {50} }} = \sqrt {\frac{{2{a^2}{{(1 - a)}^2}}}{{50}}}  = \sqrt {\frac{{{a^2}{{(1 - a)}^2}}}{{25}}}  = \frac{{\sqrt {{a^2}{{(1 - a)}^2}} }}{{\sqrt {25} }} = \frac{{a(a-1)}}{5}\)

VD2

Video hướng dẫn giải

Trả lời câu hỏi Vận dụng 2 trang 50 SGK Toán 9 Chân trời sáng tạo

Biết rằng hình tam giác và hình chữ nhật ở Hình 3 có diện tích bằng nhau. Tính chiều rộng x của hình chữ nhật.

Phương pháp giải:

Dựa vào công thức diện tích tam giác S = \(\frac{1}{2}a.h\) (h: chiều cao,a: độ dài đáy) và diện tích hình chữ nhật S = a.b (a:chiều dài; b: chiều rộng).

Lời giải chi tiết:

Diện tích tam giác là: \(\frac{1}{2}.\sqrt {27} .\sqrt {32}  = \frac{1}{2}.\sqrt {3.9} .\sqrt {16.2}  = \frac{1}{2}.3\sqrt 3 .4\sqrt 2  = 6\sqrt 6 \) cm2

Suy ra diện tích hình chữ nhật là \(6\sqrt 6 \) cm2

Vậy x = \(\frac{{6\sqrt 6 }}{{\sqrt {24} }} = \frac{{6\sqrt 6 }}{{2\sqrt 6 }} = 3\)cm.


Bình chọn:
3.6 trên 5 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Chân trời sáng tạo - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí