Giải mục 3 trang 46 SGK Toán 11 tập 1 - Cánh Diều>
Cho dãy số (left( {{u_n}} right)) với ({u_n} = {n^2}). Tính ({u_{n + 1}}). Từ đó hãy so sánh ({u_{n + 1}}) và ({u_n}) với mọi (n in mathbb{N}*)
HĐ 4
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {n^2}\). Tính \({u_{n + 1}}\). Từ đó hãy so sánh \({u_{n + 1}}\) và \({u_n}\) với mọi \(n \in \mathbb{N}*\)
Phương pháp giải:
Dựa vào phương pháp truy hồi để xác định
Lời giải chi tiết:
Xét \({u_{n + 1}} - {u_n} = {n^2} + 2n + 1 - {n^2} = 2n + 1\)
Do \(n \in \mathbb{N}* \Rightarrow 2n + 1 > 0 \Rightarrow {u_{n + 1}} > {u_n}\)
LT - VD 4
Chứng minh rằng dãy số \((v_n)\) với \(v_n = \frac{1}{3^x}\) là một dãy số giảm.
Phương pháp giải:
Chứng minh dựa vào khái niệm dãy số tăng, giảm
Lời giải chi tiết:
Ta có: \(v_{n+1}=\frac{1}{3^{n+1}}\)
Xét hiệu \(v_{n+1}-v_n=\frac{1}{3^{n+1}}-\frac{1}{3^n}=-\frac{2}{3}.\frac{1}{3^n} < 0\)
Suy ra \(v_{n+1} < v_n\).
Vậy dãy số giảm.
- Giải mục 4 trang 47 SGK Toán 11 tập 1 - Cánh Diều
- Bài 1 trang 47 SGK Toán 11 tập 1 - Cánh diều
- Bài 2 trang 47 SGK Toán 11 tập 1 - Cánh diều
- Bài 3 trang 48 SGK Toán 11 tập 1 - Cánh diều
- Bài 4 trang 48 SGK Toán 11 tập 1 - Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết Hình lăng trụ đứng, hình chóp đều, thể tích của một số hình khối - Toán 11 Cánh diều
- Lý thuyết Khoảng cách - Toán 11 Cánh diều
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Cánh diều
- Lý thuyết Góc giữa đường thẳng và mặt phẳng, góc nhị diện - Toán 11 Cánh diều
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Cánh diều
- Lý thuyết Hình lăng trụ đứng, hình chóp đều, thể tích của một số hình khối - Toán 11 Cánh diều
- Lý thuyết Khoảng cách - Toán 11 Cánh diều
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Cánh diều
- Lý thuyết Góc giữa đường thẳng và mặt phẳng, góc nhị diện - Toán 11 Cánh diều
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Cánh diều