Giải mục 2 trang 83 SGK Toán 11 tập 2 - Kết nối tri thức


Tính đạo hàm của hàm số (y = - {x^2} + 2x + 1) tại điểm ({x_0} = - 1.)

Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Tính đạo hàm của hàm số \(y =  - {x^2} + 2x + 1\) tại điểm \({x_0} =  - 1.\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\) nếu tồn tại giới hạn hữu hạn \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\)

Lời giải chi tiết

\(\begin{array}{c}f'\left( { - 1} \right) = \mathop {\lim }\limits_{x \to  - 1} \frac{{f\left( x \right) - f\left( { - 1} \right)}}{{x + 1}} = \mathop {\lim }\limits_{x \to  - 1} \frac{{ - {x^2} + 2x + 1 + 2}}{{x + 1}} = \mathop {\lim }\limits_{x \to  - 1} \frac{{ - {x^2} + 2x + 3}}{{x + 1}}\\ = \mathop {\lim }\limits_{x \to  - 1} \frac{{\left( {x + 1} \right)\left( {3 - x} \right)}}{{x + 1}} = \mathop {\lim }\limits_{x \to  - 1} \left( {3 - x} \right) = 3 + 1 = 4\end{array}\)

Vậy \(f'\left( { - 1} \right) = 4\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí