Giải mục 2 trang 7, 8, 9 SGK Toán 9 tập 1 - Chân trời sáng tạo>
Xét hai phương trình (2x + frac{1}{{x - 2}} - 4 = frac{1}{{x - 2}},,(1)) và (2x - 4 = 0,,(2)) a) Có thể biến đổi như thế nào để chuyển phương trình (1) về phương trình (2)? b) (x = 2) có là nghiệm của phương trình (2) không? Tại sao? c) (x = 2) có là nghiệm của phương trình (1) không? Tại sao?
Tổng hợp đề thi giữa kì 1 lớp 9 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Khoa học tự nhiên
HĐ2
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 2 trang 7 SGK Toán 9 Chân trời sáng tạo
Xét hai phương trình
\(2x + \frac{1}{{x - 2}} - 4 = \frac{1}{{x - 2}}\,\,(1)\) và \(2x - 4 = 0\,\,(2)\)
a) Có thể biến đổi như thế nào để chuyển phương trình (1) về phương trình (2)?
b) \(x = 2\) có là nghiệm của phương trình (2) không? Tại sao?
c) \(x = 2\) có là nghiệm của phương trình (1) không? Tại sao?
Phương pháp giải:
- Quy đồng mẫu thức phương trình (1) để chuyển về phương trình (2).
- Thay \(x = 2\) vào phương trình (1) và phương trình (2) để kiểm tra \(x = 2\) có phải là nghiệm hay không.
Lời giải chi tiết:
a)
\(\begin{array}{l}2x + \frac{1}{{x - 2}} - 4 = \frac{1}{{x - 2}}\,\,\\\frac{{2x(x - 2)}}{{x - 2}} + \frac{1}{{x - 2}} - \frac{{4(x - 2)}}{{x - 2}} = \frac{1}{{x - 2}}\\\frac{{2x(x - 2) + 1 - 4(x - 2)}}{{x - 2}} = \frac{1}{{x - 2}}\\\frac{{2{x^2} - 4x + 1 - 4x + 8}}{{x - 2}} = \frac{1}{{x - 2}}\\\frac{{2{x^2} - 8x + 8}}{{x - 2}} = 0\\\frac{{2({x^2} - 4x + 4)}}{{x - 2}} = 0\\\frac{{2{{(x - 2)}^2}}}{{x - 2}} = 0\end{array}\)
Nếu \(x - 2 = 0\) thì phương trình vô nghĩa.
Nếu \(x - 2 \ne 0\) suy ra \(x \ne 2\) thì phương trình trở thành:
\(\begin{array}{l}2(x - 2) = 0\\2x - 4 = 0\end{array}\)
Vậy để biến đổi phương trình (1) về phương trình (2) thì \(x \ne 2\).
b) Thay \(x = 2\) vào phương trình (2) ta được:
\(\begin{array}{l}2.2 - 4 = 0\\4 - 4 = 0\\0 = 0\end{array}\)
Điều này luôn đúng nên \(x = 2\) là nghiệm của phương trình (2).
c) Thay \(x = 2\) vào phương trình (1) ta được:
\(\begin{array}{l}2.2 + \frac{1}{{2 - 2}} - 4 = \frac{1}{{2 - 2}}\,\,\\4 + \frac{1}{0} - 4 = \frac{1}{0}\end{array}\)
Điều này là vô lí nên \(x = 2\) không phải là nghiệm của phương trình (1).
TH3
Video hướng dẫn giải
Trả lời câu hỏi Thực hành 3 trang 8 SGK Toán 9 Chân trời sáng tạo
Tìm điều kiện xác định của mỗi phương trình sau:
a) \(\frac{5}{{x + 7}} = \frac{{ - 14}}{{x - 5}}\)
b) \(\frac{3}{{3x - 2}} = \frac{x}{{x + 2}} - 1\)
Phương pháp giải:
Đối với phương trình chứa ẩn ở mẫu, để tìm điều kiện xác định của phương trình ta tìm điều kiện của ẩn để tất cả các mẫu thức trong phương trình đều khác 0.
Lời giải chi tiết:
a) \(\frac{5}{{x + 7}} = \frac{{ - 14}}{{x - 5}}\)
Điều kiện xác định: \(x + 7 \ne 0\) và \(x - 5 \ne 0\)
khi \(x \ne - 7\) và \(x \ne 5\).
Vậy điều kiện xác định của phương trình là \(x \ne - 7\) và \(x \ne 5\).
b) \(\frac{3}{{3x - 2}} = \frac{x}{{x + 2}} - 1\)
Điều kiện xác định: \(3x - 2 \ne 0\) và \(x + 2 \ne 0\)
khi \(x \ne \frac{2}{3}\) và \(x \ne - 2\).
Vậy điều kiện xác định của phương trình là \(x \ne \frac{2}{3}\) và \(x \ne - 2\).
HĐ3
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 3 trang 8 SGK Toán 9 Chân trời sáng tạo
Cho phương trình \(\frac{x}{{x - 2}} = \frac{1}{{x + 1}} + 1\).
a) Tìm điều kiện xác định của phương trình đã cho.
b) Xét các phép biến đổi như sau:
\(\begin{array}{l}\frac{x}{{x - 2}} = \frac{1}{{x + 1}} + 1\\\frac{x}{{x - 2}} = \frac{{x + 2}}{{x + 1}}\end{array}\)
\(\frac{{x(x + 1)}}{{(x - 2)(x + 1)}} = \frac{{(x + 2)(x - 2)}}{{(x + 1)(x - 2)}}\)
\({x^2} + x = {x^2} - 4\)
\(x = - 4\)
Hãy giải thích cách thực hiện mỗi phép biến đổi trên.
c) \(x = - 4\) có là nghiệm của phương trình đã cho không?
Phương pháp giải:
- Đối với phương trình chứa ẩn ở mẫu, để tìm điều kiện xác định của phương trình ta tìm điều kiện của ẩn để tất cả các mẫu thức trong phương trình đều khác 0.
- Quy đồng mẫu thức hai vế của phương trình.
- Thay \(x = - 4\) vào phương trình để kiểm tra có phải là nghiệm hay không.
Lời giải chi tiết:
a) Điều kiện xác định: \(x - 2 \ne 0\) và \(x + 1 \ne 0\)
khi \(x \ne 2\) và \(x \ne - 1\).
Vậy điều kiện xác định của phương trình là \(x \ne 2\) và \(x \ne - 1\).
b) \(\frac{x}{{x - 2}} = \frac{1}{{x + 1}} + 1\)
Quy đồng vế phải với mẫu thức chung là \(x + 1\): \(\frac{x}{{x - 2}} = \frac{{x + 2}}{{x + 1}}\)
Quy đồng cả hai vế với mẫu thức chung là \((x - 2)(x + 1)\): \(\frac{{x(x + 1)}}{{(x - 2)(x + 1)}} = \frac{{(x + 2)(x - 2)}}{{(x + 1)(x - 2)}}\)
Hai phân thức bằng nhau có cùng mẫu thì tử bằng nhau.\({x^2} + x = {x^2} - 4\)
Giải phương trình ta được \(x = - 4\)
c) Thay \(x = - 4\) vào phương trình, ta được:
\(\begin{array}{l}\frac{{ - 4}}{{( - 4) - 2}} = \frac{1}{{( - 4) + 1}} + 1\\\frac{{ - 4}}{{ - 6}} = \frac{1}{{ - 3}} + 1\\\frac{2}{3} = \frac{2}{3}\\\frac{2}{3} - \frac{2}{3} = 0\\0 = 0\end{array}\)
Điều này luôn đúng nên \(x = - 4\) là nghiệm của phương trình đã cho.
Vậy \(x = - 4\) là nghiệm của phương trình đã cho.
TH4
Video hướng dẫn giải
Trả lời câu hỏi Thực hành 4 trang 9 SGK Toán 9 Chân trời sáng tạo
Giải các phương trình:
a) \(\frac{{x + 6}}{{x + 5}} + \frac{3}{2} = 2\);
b) \(\frac{2}{{x - 2}} - \frac{3}{{x - 3}} = \frac{{3x - 20}}{{(x - 3)(x - 2)}}\).
Phương pháp giải:
Để giải phương trình chứa ẩn ở mẫu, ta làm như sau:
Bước 1: Tìm điều kiện xác định của phương trình.
Bước 2: Quy đồng mẫu thức hai vế của phương trình rồi khử mẫu.
Bước 3: Giải phương trình vừa nhận được.
Bước 4: Xét mỗi giá trị tìm được ở Bước 3, giá trị nào thỏa mãn điều kiện xác định thì đó là nghiệm của phương trình đã cho.
Lời giải chi tiết:
a) \(\frac{{x + 6}}{{x + 5}} + \frac{3}{2} = 2\)
Điều kiện xác định: \(x \ne - 5\).
Ta có:
\(\begin{array}{l}\frac{{x + 6}}{{x + 5}} + \frac{3}{2} = 2\\\frac{{2(x + 6)}}{{2(x + 5)}} + \frac{{3(x + 5)}}{{2(x + 5)}} = \frac{{2.2(x + 5)}}{{2(x + 5)}}\\2x + 12 + 3x + 15 = 4x + 20\\x = - 7\end{array}\)
Ta thấy: \(x = - 7\) thỏa mãn điều kiện xác định.
Vậy nghiệm của phương trình đã cho là \(x = - 7\).
b) \(\frac{2}{{x - 2}} - \frac{3}{{x - 3}} = \frac{{3x - 20}}{{(x - 3)(x - 2)}}\)
Điều kiện xác định: \(x \ne 2\) và \(x \ne 3\).
Ta có:
\(\begin{array}{l}\frac{2}{{x - 2}} - \frac{3}{{x - 3}} = \frac{{3x - 20}}{{(x - 3)(x - 2)}}\\\frac{{2(x - 3)}}{{(x - 2)(x - 3)}} - \frac{{3(x - 2)}}{{(x - 2)(x - 3)}} = \frac{{3x - 20}}{{(x - 2)(x - 3)}}\\2x - 6 - 3x + 6 = 3x - 20\\4x = 20\\x = 5\end{array}\)
Ta thấy \(x = 5\) thỏa mãn điều kiện xác định.
Vậy nghiệm của phương trình đã cho là \(x = 5\).
VD2
Video hướng dẫn giải
Trả lời câu hỏi Vận dụng 2 trang 9 SGK Toán 9 Chân trời sáng tạo
Hai thành phố A và B cách nhau 120km. Một ô tô di chuyển từ A đến B, rồi quay trở về A với tổng thời gian đi và về là 4 giờ 24 phút. Tính tốc độ lúc đi của ô tô, biết tốc độ lúc về lớn hơn tốc độ lúc đi là 20%.
Phương pháp giải:
- Gọi tốc độ lúc đi của ô tô là \(x\) (km/h), \(x > 0\).
- Biểu diễn các đại lượng liên quan theo ẩn \(x\) bằng công thức \(s = v.t\).
- Dựa vào dữ kiện bài toán để lập phương trình ẩn \(x\).
- Giải phương trình nhận được.
Lời giải chi tiết:
Gọi tốc độ lúc đi của ô tô là \(x\) (km/h), \(x > 0\).
Thời gian lúc đi của ô tô là \(\frac{{120}}{x}\) (giờ).
Tốc độ lúc về của ô tô là \(x + 20\% x = 1,2x\) (km/h).
Thời gian lúc về của ô tô là \(\frac{{120}}{{1,2x}}\) (giờ).
Đổi 4 giờ 24 phút = \(\frac{{22}}{5}\) giờ.
Vì tổng thời gian đi và về của ô tô là 4 giờ 24 phút nên ta có phương trình:
\(\begin{array}{l}\frac{{120}}{x} + \frac{{120}}{{1,2x}} = \frac{{22}}{5}\\\frac{{120.6}}{{6x}} + \frac{{120.5}}{{6x}} = \frac{{22.1,2x}}{{6x}}\\720 + 600 = \frac{{132}}{5}x\\x = 50\end{array}\)
Ta thấy \(x = 50\) thỏa mãn điều kiện.
Vậy tốc độ lúc đi của ô tô là 50km/h.
- Giải bài tập 1 trang 9 SGK Toán 9 tập 1 - Chân trời sáng tạo
- Giải bài tập 2 trang 9 SGK Toán 9 tập 1 - Chân trời sáng tạo
- Giải bài tập 3 trang 9 SGK Toán 9 tập 1 - Chân trời sáng tạo
- Giải bài tập 4 trang 10 SGK Toán 9 tập 1 - Chân trời sáng tạo
- Giải bài tập 5 trang 10 SGK Toán 9 tập 1 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 9 - Chân trời sáng tạo - Xem ngay