Giải mục 1 trang 6, 7 SGK Toán 9 tập 1 - Chân trời sáng tạo>
Cho phương trình (left( {x + 3} right)left( {2x - 5} right) = 0). a) Các giá trị (x = - 3,,x = frac{5}{2}) có phải là nghiệm của phương trình không? Tại sao? b) Nếu số ({x_0}) khác ( - 3) và khác (frac{5}{2}) thì ({x_0}) có phải là nghiệm của phương trình không? Tại sao?
HĐ1
Video hướng dẫn giải
Trả lời câu hỏi Hoạt động 1 trang 6 SGK Toán 9 Chân trời sáng tạo
Cho phương trình \(\left( {x + 3} \right)\left( {2x - 5} \right) = 0\).
a) Các giá trị \(x = - 3,\,x = \frac{5}{2}\) có phải là nghiệm của phương trình không? Tại sao?
b) Nếu số \({x_0}\) khác \( - 3\) và khác \(\frac{5}{2}\) thì \({x_0}\) có phải là nghiệm của phương trình không? Tại sao?
Phương pháp giải:
Thay các giá trị của \(x\) vào phương trình đã cho để kiểm tra xem chúng có phải là nghiệm của phương trình hay không?
Lời giải chi tiết:
a) Với \(x = - 3\), ta có: \(\left( {-3 + 3} \right)\left[ {2.(-3) - 5} \right] = 0.(-11)= 0\).
Với \(x = \frac{5}{2}\), ta có: \(\left( {\frac{5}{2} + 3} \right)\left( {2.\frac{5}{2} - 5} \right) = \frac{11}{2}.0 = 0\).
Vậy phương trình đã cho có hai nghiệm \(x = - 3\) và \(x = \frac{5}{2}\).
b) Nếu số \({x_0}\) khác -3 và khác \(\frac{5}{2}\) thì \({x_0}\) không phải là nghiệm của phương trình.
TH1
Video hướng dẫn giải
Trả lời câu hỏi Thực hành 1 trang 7 SGK Toán 9 Chân trời sáng tạo
Giải các phương trình:
a) \(\left( {x - 7} \right)\left( {5x + 4} \right) = 0\);
b) \(\left( {2x + 9} \right)\left( {\frac{2}{3}x - 5} \right) = 0\).
Phương pháp giải:
Để giải phương trình \(\left( {{a_1}x + {b_1}} \right)\left( {{a_2}x + {b_2}} \right) = 0\), ta giải hai phương trình \({a_1}x + {b_1} = 0\) và \({a_2}x + {b_2} = 0\), rồi lấy tất cả các nghiệm của chúng.
Lời giải chi tiết:
a) Ta có: \(\left( {x - 7} \right)\left( {5x + 4} \right) = 0\)
\(x - 7 = 0\) hoặc \(5x + 4 = 0\)
\(x = 7\) hoặc \(x = \frac{{ - 4}}{5}\).
Vậy phương trình đã cho có hai nghiệm \(x = 7\) và \(x = \frac{{ - 4}}{5}\).
b) Ta có: \(\left( {2x + 9} \right)\left( {\frac{2}{3}x - 5} \right) = 0\)
\(2x + 9 = 0\) hoặc \(\frac{2}{3}x - 5 = 0\)
\(2x = - 9\) hoặc \(\frac{2}{3}x = 5\)
\(x = - \frac{{9}}{2}\) hoặc \(x = \frac{{15}}{2}\).
Vậy phương trình đã cho có hai nghiệm \(x = - \frac{{9}}{2}\) và \(x = \frac{{15}}{2}\).
TH2
Video hướng dẫn giải
Trả lời câu hỏi Thực hành 2 trang 7 SGK Toán 9 Chân trời sáng tạo
Giải các phương trình:
a) \(2x\left( {x + 6} \right) + 5\left( {x + 6} \right) = 0\);
b) \(x\left( {3x + 5} \right) - 6x - 10 = 0\).
Phương pháp giải:
Để giải phương trình \(\left( {{a_1}x + {b_1}} \right)\left( {{a_2}x + {b_2}} \right) = 0\), ta giải hai phương trình \({a_1}x + {b_1} = 0\) và \({a_2}x + {b_2} = 0\), rồi lấy tất cả các nghiệm của chúng.
Lời giải chi tiết:
a) Ta có: \(2x\left( {x + 6} \right) + 5\left( {x + 6} \right) = 0\)
\(\left( {x + 6} \right)\left( {2x + 5} \right) = 0\)
\(x + 6 = 0\) hoặc \(2x + 5 = 0\)
\(x = - 6\) hoặc \(x = \frac{{ - 5}}{2}\).
Vậy phương trình đã cho có hai nghiệm \(x = - 6\) và \(x = \frac{{ - 5}}{2}\).
b) Ta có: \(x\left( {3x + 5} \right) - 6x - 10 = 0\)
\(x\left( {3x + 5} \right) - 2\left( {3x + 5} \right) = 0\)
\(\left( {3x + 5} \right)\left( {x - 2} \right) = 0\)
\(3x + 5 = 0\) hoặc \(x - 2 = 0\)
\(x = \frac{{ - 5}}{3}\) hoặc \(x = 2\).
Vậy phương trình đã cho có hai nghiệm \(x = \frac{{ - 5}}{3}\) và \(x = 2\).
VD1
Video hướng dẫn giải
Trả lời câu hỏi Vận dụng 1 trang 7 SGK Toán 9 Chân trời sáng tạo
Độ cao \(h\) (mét) của một quả bóng gôn sau khi được đánh \(t\) giây được cho bởi công thức \(h = t\left( {20 - 5t} \right)\). Có thể tính được thời gian bay của quả bóng kể từ khi được đánh đến khi chạm đất không?
Phương pháp giải:
Để giải phương trình \(\left( {{a_1}x + {b_1}} \right)\left( {{a_2}x + {b_2}} \right) = 0\), ta giải hai phương trình \({a_1}x + {b_1} = 0\) và \({a_2}x + {b_2} = 0\), rồi lấy tất cả các nghiệm của chúng.
Lời giải chi tiết:
Khi quả bóng gôn chạm đất thì độ cao của nó so với mặt đất là \(0\) (mét) nên \(h = 0\).
Khi đó ta có: \(0 = t\left( {20 - 5t} \right)\)
\(t = 0\) hoặc \(20 - 5t = 0\)
\(t = 0\) hoặc \(5t = 20\)
\(t = 0\) hoặc \(t = 4\).
Vì quả bóng gôn đã được đánh đi và chạm đất nên \(t \ne 0\) suy ra \(t = 4\) thỏa mãn đề bài.
Vậy thời gian bay của quả bóng kể từ khi được đánh đến khi chạm đất là \(4\) giây.
- Giải mục 2 trang 7, 8, 9 SGK Toán 9 tập 1 - Chân trời sáng tạo
- Giải bài tập 1 trang 9 SGK Toán 9 tập 1 - Chân trời sáng tạo
- Giải bài tập 2 trang 9 SGK Toán 9 tập 1 - Chân trời sáng tạo
- Giải bài tập 3 trang 9 SGK Toán 9 tập 1 - Chân trời sáng tạo
- Giải bài tập 4 trang 10 SGK Toán 9 tập 1 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 9 - Chân trời sáng tạo - Xem ngay