Giải bài tập 7 trang 37 SGK Toán 12 tập 1 - Chân trời sáng tạo


Tiệm cận đứng của đồ thị hàm số (y = frac{{ - 2x + 3}}{{5x + 1}}) là đường thẳng có phương trình A. (y = - frac{1}{5}) B. (y = - frac{2}{5}) C. (x = - frac{1}{5}) D. (x = - frac{2}{5})

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

 

 

Tiệm cận đứng của đồ thị hàm số \(y = \frac{{ - 2x + 3}}{{5x + 1}}\) là đường thẳng có phương trình

A. \(y =  - \frac{1}{5}\)           

B. \(y =  - \frac{2}{5}\)           

C. \(x =  - \frac{1}{5}\)            

D. \(x =  - \frac{2}{5}\)

Phương pháp giải - Xem chi tiết

Đường thẳng x = a được gọi là một đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau thoả mãn:\(\mathop {\lim f(x) = }\limits_{x \to {a^ - }}  + \infty ,\mathop {\lim f(x) = }\limits_{x \to {a^ + }}  + \infty ,\mathop {\lim f(x) = }\limits_{x \to {a^ - }}  - \infty ,\mathop {\lim f(x) = }\limits_{x \to {a^ + }}  - \infty \)

Lời giải chi tiết

Chọn C.

Tập xác định: \(D = \mathbb{R}\backslash \{  - \frac{1}{5}\} \).

Ta có: \(\mathop {\lim }\limits_{x \to  - {{\frac{1}{5}}^ - }} y = \mathop {\lim }\limits_{x \to  - {{\frac{1}{5}}^ - }} \frac{{ - 2x + 3}}{{5x + 1}} =  - \infty \),

\(\mathop {\lim }\limits_{x \to  - {{\frac{1}{5}}^ + }} y = \mathop {\lim }\limits_{x \to  - {{\frac{1}{5}}^ + }} \frac{{ - 2x + 3}}{{5x + 1}} =  + \infty \).

Vậy đường thẳng x = \( - \frac{1}{5}\) là một tiệm cận đứng của đồ thị hàm số.


Bình chọn:
4.2 trên 5 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí