Giải bài tập 3 trang 37 SGK Toán 12 tập 1 - Chân trời sáng tạo


Cho hàm số (y = frac{{{x^2} - 4x + 1}}{{x - 4}}). Trong các khẳng định sau, khẳng định nào đúng?

Đề bài

 

 

Cho hàm số \(y = \frac{{{x^2} - 4x + 1}}{{x - 4}}\). Trong các khẳng định sau, khẳng định nào đúng?

A. Hàm số đạt cực tiểu tại x = 3, giá trị cực tiểu là y = 2.

B. Hàm số đạt cực tiểu tại x = 5, giá trị cực tiểu là y = 6.

C. Hàm số đạt cực tiểu tại x = 3, giá trị cực tiểu là y = 6.

D. Hàm số đạt cực tiểu tại x = 5, giá trị cực tiểu là y = 2.

 

Phương pháp giải - Xem chi tiết

Tìm đạo hàm và lập bảng biến thiên

 

Lời giải chi tiết

Chọn B

\(y' = \frac{{{x^2} - 8x + 15}}{{{{(x - 4)}^2}}} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 5\end{array} \right.\)

Bảng biến thiên:

Từ bảng biến thiên ta thấy, hàm số đạt cực đại tại x = 3 và \({y_{cd}} = 2\), đạt cực tiểu tại x = 5 và \({y_{ct}} = 6\)

 

Bình chọn:
3.7 trên 3 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí